a2 United States Patent

Newton et al.

US009456053B2

US 9,456,053 B2
*Sep. 27, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

CONTENT DELIVERY NETWORK

Applicant: Level 3 Communications, LL.C,
Broomfield, CO (US)
Inventors: Christopher Newton, Westlake Village,
CA (US); Laurence R. Lipstone,
Calabasas, CA (US); William Crowder,
Camarillo, CA (US); Jeffrey G. Koller,
Oxnard, CA (US); David Fullagar,
Boulder, CO (US); Maksim
Yevmenkin, Thousand Oaks, CA (US)
Assignee: Level 3 Communications, LL.C,
Broomfield, CO (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 455 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/714,410

Filed: Dec. 14, 2012

Prior Publication Data

US 2013/0159472 Al Jun. 20, 2013

Related U.S. Application Data

Provisional application No. 61/570,448, filed on Dec.
14, 2011, provisional application No. 61/570,486,
filed on Dec. 14, 2011.

Int. CL.
GO6F 15/16 (2006.01)
HO4L 29/08 (2006.01)
(Continued)
U.S. CL
CPC ... HO4L 67/32 (2013.01); HO4L 41/0856

(2013.01); HO4L 41/0893 (2013.01); HO4L
41/509 (2013.01); HO4L 41/5064 (2013.01);

HO4L 67/26 (2013.01); HO4L 67/2842
(2013.01); HO4L 67/2852 (2013.01); HO4L
67/34 (2013.01); HO4L 67/42 (2013.01); HO4L
63/166 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,511,208 A 4/1996 Boyles et al.
5,805,837 A 9/1998 Hoover et al.
5,870,559 A 2/1999 Leshem et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 102047244 A 5/2011
WO WO0-0215014 Al 2/2002
(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 14/094,868, filed Dec. 3, 2013, “Tracking Invali-
dation Completion in a Content Delivery Framework”.

(Continued)

Primary Examiner — Brian P Whipple

(57) ABSTRACT

A content delivery network (CDN) includes a control core;
and a plurality of caches, each of said caches constructed
and adapted to: upon joining the CDN, obtain global con-
figuration data from the control core; and obtain data from
other caches. Each of the caches is further constructed and
adapted to, having joined the CDN, upon receipt of a request
for a particular resource: obtain updated global configuration
data, if needed; obtain a customer configuration script (CCS)
associated with the particular resource; and serve the par-
ticular resource in accordance with the CCS.

50 Claims, 43 Drawing Sheets

CacHEs 102

CACHE

5 104

104-k
RENDEZVOUS
104-1

*|| Renoezvous

CONTENT DELIVERY NETWORK (CDN) 100

COLLECTOR(S} 106

CONTROL
CORE

OPERATION /
MEASUREMENT /
ADMINISTRATION

US 9,456,053 B2

Page 2
(51) Int. CL 2003/0115421 Al 6/2003 McHenry et al.
2003/0135509 Al 7/2003 Davis et al.
HO4L 12/24 (2006.01) 2003/0140111 Al 7/2003 Pace et al.
HO4L 29/06 (2006.01) 2003/0154090 Al 8/2003 Bernstein et al.
2003/0200283 Al 10/2003 Suryanarayana et al.
(56) References Cited 2004/0068622 Al 4/2004 Van Doren et al.
2004/0073596 Al 4/2004 Kloninger et al.
U.S. PATENT DOCUMENTS 2004/0162871 Al 8/2004 Pabla et al.

2004/0193656 Al 9/2004 Pizzo et al.
2004/0215757 Al 10/2004 Butler
2004/0230797 Al 112004 Ofek
2005/0010653 Al 1/2005 McCanne
2005/0086348 Al 4/2005 Balassanian
2005/0086386 Al 4/2005 Shen et al.
2005/0160429 Al 7/2005 H_ameleers et al.
6484143 Bl 11/2002 Swildens et al. 2005/0177600 AL 82005 Eilam et al.
6571261 BI 52003 Wang-Knop et al. 2005/0188073 Al /2005 Nakamichi et al.

e ; 2005/0190775 Al 9/2005 Tonnby et al.
6,587,928 Bl 7/2003 Periyannan et al. .

SSA 2005/0192995 Al 9/2005 Li et al.
6,654,807 B2 11/2003 Farber et al. . .
6.757.708 Bl 6/2004 Craig et al. 2005/0289388 Al 12/2005 Black-Ziegelbein et al.
0965930 Bl 112005 Amcovood et al 2006/0047751 Al 3/2006 Chen et al.

FO5E . - : 2006/0064485 Al 3/2006 Baron et al.
7,010,578 B1* 3/2006 Lewin et al.c.coooo..... 709/217 :

7054935 B2 /2006 Fesber of al. 2006/0112176 Al 5/2006 Liu et al.
706255 Bl £/2006 Chen cf al 2006/0167704 Al 7/2006 Nicholls et al.

o 2 2006/0212524 Al 92006 Wu et al.
7,076,608 B2 7/2006 Arunagirinathan et al.
7136649 B2 112006 Ying et al. 2006/0233310 Al 10/2006 Adams et al.
7206841 B2 4/2007 Travewsat of al 2006/0233311 Al 10/2006 Adams et al.
7320085 B2 12008 Bain : 2006/0244818 Al 11/2006 Majors et al.
7’370’102 Bl 52008 Chu ef al 2007/0156845 Al 7/2007 Devanneaux et al.
7395346 B2 7/2008 Pinder o al 2007/0156876 Al 7/2007 Sundarrajan et al.
7461206 B2 12/2008 Bhanoo et 2l 2007/0156965 Al 7/2007 Sundarrajan et al.
75127020 Bl 37009 Stivastava ot al 2007/0156966 Al 7/2007 Sundarrajan et al.
7212707 Bl 3/2009 Mauanrasads et al 2007/0162434 Al 72007 Alessi et al.
7533181 B2 4/2009 Swildons ot gl 2007/0192486 Al 82007 Wilson et al.
7797426 Bl 9/2010 Lyon ' 2007/0198678 Al 8/2007 Dieberger et al.
7.822.871 B2 10/2010 Stolorz et al. 2007/0245090 Al 10/2007 King et al.
7.840.667 B2 112010 Weller et al. 2007/0250468 Al 10/2007 Pieper
73601964 B2 122010 Stlors et al 2007/0271385 Al 11/2007 Davis et al.

ioed : 2008/0066073 Al 3/2008 Sen
7,945,693 B2 5/2011 Farber et al.
7949779 B2 52011 Furber o ol 2008/0108360 Al 5/2008 Baarman et al.
8015998 B2 97011 Yevmenkin et al 2008/0209036 Al 82008 Sakamoto et al.
S 060613 B2 117011 Faberetal 2008/0215735 Al 9/2008 TFarber et al.

s or oAk 2008/0228864 Al 92008 Plamondon
8,255,557 B2 8/2012 Raciborski et al.
£260841 Bl 92012 Maity 2008/0256299 Al 10/2008 Iyengar et al.
©281035 B2 10/2012 Farbor et al 2008/0301470 Al 12/2008 Green et al.
2206206 B3 102012 Keith. To 2008/0313267 Al 12/2008 Desai et al.
2206306 B2 10/2012 Farbor et al 2009/0019228 Al 1/2009 Brown et al.
§3215556 Bl 112012 Chatterjee et al 2009/0125413 Al 52009 Le Chevalier
©395970 B2 3/2013 Black ctal 2009/0125758 Al 5/2009 Anuszezyk et al.
2412523 Bl 4/2013 Richandson ct al 2009/0150319 Al 6/2009 Matson et al.
©458290 B2 6/2013 Black etal. 2009/0157850 Al 6/2009 Gagliardi et al.
§478858 B2 72013 Dunbar ef al 2009/0164621 Al 6/2009 Kothari et al.
2490750 B2 7/2013 Vevenkin of al 2009/0165115 Al 6/2009 Toumura et al.
2511208 Bl /2013 Fraser : 2009/0171752 Al 7/2009 Galvin et al.
e921813 B2 82013 Blak et al 2009/0210528 Al /2009 Swildens
2543702 Bl 9/2013 Morshall of al 2009/0254661 Al 10/2009 Fullagar et al.
2'377'827 Bl 1L/2013 Sehm ot al 2009/0276842 Al 112009 Yevmenkin et al.
e615577 B2 122013 Black et al 2010/0042734 Al 2/2010 Olafsson et al.
9626876 Bl 112014 Kokl of a 2010/0064035 Al 3/2010 Branca et al.
2676878 B2 L2014 Wolbes of sl 2010/0083281 Al 42010 Malladi et al.
8,645,517 B2 2/2014 Stolorz et al. 2010/0088405 Al 4/2010 Huang

8.788.671 B2 7/2014 Richardson et al. 2010/0114857 Al 5/2010 Edwards

- 2010/0142712 Al 6/2010 Tang et al.
8,819,283 B2 8/2014 Richardson et al.
8.856.865 Bl 10/2014 Martini 2010/0158236 Al 6/2010 Chang et al.

8,868,772 B2 10/2014 Major 2010/0180105 Al 7/2010 Asnaashari

8.949.533 B2 2/2015 Puthalath et al. 2010/0217869 Al 82010 Esteban

e : 2010/0228874 Al 9/2010 Rajan
9,098,464 B2 8/2015 Hajiaghayi et al. !
9.246.965 Bl 1/2016 Stoica 2010/0228962 Al 9/2010 Simon et al.

5,951,694 A 9/1999 Choquier et al.
6,173,322 Bl 1/2001 Hu

6,185,598 Bl 2/2001 Farber et al.
6,212,178 Bl 4/2001 Beck et al.
6,226,694 Bl 5/2001 Constant et al.
6,279,032 Bl 8/2001 Short et al.

2010/0246797 Al 9/2010 Chavez et al.
2002/0010798 Al 1/2002 Ben-Shaul et al.
50020091801 AL 72002 Lewm S 2010/0257258 Al 102010 Liu ct al.
2002/0116583 Al /2002 Copeland et al. 2010/0274765 Al 10/2010 Murphy et al.
2002/0120717 Al 8/2002 Giotta 2010/0281224 Al 112010 Ho et al.
2002/0161823 Al 10/2002 Casati et al. 2010/0332595 Al 12/2010 Fullagar et al.
2002/0165727 Al 11/2002 Greene et al. 2011/0022471 Al 1/2011 Brueck
2002/0174168 Al 11/2002 Beukema et al. 2011/0022812 Al 1/2011 van der Linden et al.
2002/0174227 Al 11/2002 Hartsell et al. 2011/0072073 Al 3/2011 Curtis
2002/0184357 Al 12/2002 Traversat et al. 2011/0099290 Al 4/2011 Swildens et al.
2003/0028594 Al 2/2003 Laschkewitsch et al. 2011/0107364 Al 5/2011 Lajoie et al.

2003/0115283 Al 6/2003 Barbir et al. 2011/0112909 Al 5/2011 Singh et al.

US 9,456,053 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0116376 Al
2011/0138064 Al
2011/0153724 Al
2011/0161513 Al
2011/0194681 Al
2011/0219108 Al
2011/0219109 Al
2011/0238488 Al
2011/0247084 Al
2011/0276679 Al
2011/0295983 Al
2011/0296053 Al
2012/0002717 Al
2012/0023530 Al
2012/0030341 Al
2012/0079023 Al
2012/0079083 Al
2012/0089664 Al
2012/0113893 Al
2012/0127183 Al
2012/0150993 Al
2012/0159558 Al
2012/0163203 Al
2012/0166589 Al
2012/0191862 Al
2012/0198043 Al
2012/0209952 Al
2012/0215779 Al
2012/0221767 Al
2012/0226734 Al
2012/0284384 Al
2012/0290911 Al
2013/0041972 Al*
2013/0046664 Al
2013/0046883 Al
2013/0094445 Al
2013/0103791 Al
2013/0104173 Al
2013/0144727 Al
2013/0152187 Al
2013/0159473 Al
2013/0159500 Al
2013/0173769 Al
2013/0191499 Al
2013/0326032 Al
2014/0047085 Al
2014/0095537 Al
2014/0101736 Al
2014/0108671 Al
2014/0122725 Al
2014/0126370 Al
2014/0198641 Al
2014/0304590 Al
2014/0344391 Al
2014/0344399 Al
2014/0344400 Al
2014/0344401 Al
2014/0344413 Al
2014/0344425 Al
2014/0344452 Al
2014/0344453 Al
2015/0067185 Al
2015/0088634 Al
2015/0288647 Al

5/2011 Pacella
6/2011 Rieger et al.
6/2011 Raja et al.
6/2011 Viers
8/2011 Fedorov et al.
9/2011 Lisiecki
9/2011 Zehavi
9/2011 Hahn et al.
10/2011 Kolbert et al.
11/2011 Newton et al.
12/2011 Medved
12/2011 Medved
1/2012 Ma et al.
1/2012 Xia
2/2012 Jensen
3/2012 Tejada-Gamero et al.
3/2012 Branca et al.
4/2012 Igelka
5/2012 Damola
5/2012 Vonog et al.
6/2012 Flack et al.
6/2012 Whyte et al.
6/2012 Wilkinson et al.
6/2012 Swildens et al.
7/2012 Kovvali et al.
8/2012 Hesketh et al.
8/2012 Lotfalla et al.
8/2012 Lipstone
8/2012 Post et al.
9/2012 Poese
11/2012 Shi et al.
11/2012 Zhao
2/2013 Field et al.cccovevnne 709/213
2/2013 Kazerani et al.
2/2013 Lientz et al.
4/2013 De Foy
4/2013 Gottdenker et al.
4/2013 Tjio et al.
6/2013 Morot-Gaudry et al.
6/2013 Strebe
6/2013 Newton et al.
6/2013 Reus et al.
7/2013 Seastrom et al.
7/2013 Ludin et al.
12/2013 Duarte et al.
2/2014 Peters et al.
4/2014 Park et al.
4/2014 Mays et al.
4/2014 Watson
5/2014 Batrouni et al.
5/2014 Xie
7/2014 Perkuhn et al.
10/2014 Zhang et al.
11/2014 Varney et al.
11/2014 Lipstone et al.
11/2014 Varney et al.
11/2014 Varney et al.
11/2014 Lipstone et al.
11/2014 Varney et al.
11/2014 Lipstone et al.
11/2014 Varney et al.
3/2015 Tamblin et al.
3/2015 Greenzeiger
10/2015 Chhabra

FOREIGN PATENT DOCUMENTS

WO WO0-0225463 Al
WO WO-2011115471 Al

3/2002
9/2011

OTHER PUBLICATIONS

U.S. Appl. No. 14/088,362, filed Nov. 23, 2013, “Invalidation in a
Content Delivery Framework”.

U.S. Appl. No. 14/095,079, filed Dec. 3, 2013, “Dynamic Topology
Transitions in a Content Delivery Framework”.

U.S. Appl. No. 14/105,981, filed Dec. 13, 2013, “Content Delivery
Framework with Autonomous CDN Partitioned Into Multiple Vir-
tual CDNs”.

U.S. Appl. No. 14/088,358, filed Nov. 23, 2013, “Verification and
Auditing in a Content Delivery Framework”.

U.S. Appl. No. 14/088,367, filed Nov. 23, 2013, “Rendezvous
Optimization in a Content Delivery Framework”.

U.S. Appl. No. 14/105,915, filed Dec. 13, 2013, “Content Delivery
Framework Having Autonomous CDN Partitioned into Multiple
Virtual CDNs to Implement CDN Interconnection, Delegation, and
Federation”.

U.S. Appl. No. 14/088,542, filed Nov. 25, 2013, “Selective Warm
Up and Wind Down Strategies in a Content Delivery Network”.
U.S. Appl. No. 14/088,356, filed Nov. 23, 2013, “Configuration and
Control in Content Delivery Framework”.

Non-Final Office Action, dated Apr. 16, 201, U.S. Appl. No.
13/802,489, filed Mar. 13, 2013, 35 pgs.

Oracle Solaris Cluster Geographic Edition System Administration
Guide, Oracle, Part No. E25231 , 144 pgs.

International Search Report, dated May 23, 2014, Int’l Appl. No.
PCT/US13/074824, Int’l Filing Date Dec. 12, 2013, 9 pgs.

U.S. Appl. No. 14/302,865, filed Jun. 12, 2014, “Request-Response
Processing in a Content Delivery Network”.

U.S. Appl. No. 14/302,944, filed Jun. 12, 2014, “Customer-Specific
Request-Response Processing in a content Delivery Network”.
U.S. Appl. No. 14/303,314, filed Jun. 12, 2014, “Collector Mecha-
nism in a Content Delivery Network”.

U.S. Appl. No. 14/303,389, filed Jun. 12, 2014, “Collector Mecha-
nisms in a Content Delivery Network”.

U.S. Appl. No. 14/307,374, filed Jun. 17, 2014, “Invalidation
Sequencing in a Content Delivery Framework”.

U.S. Appl. No. 14/307,380, filed Jun. 17, 2014, “Automated Learn-
ing of Peering Policies for Popularity Driven Replication in Content
Delivery Framework”.

U.S. Appl. No. 14/307,389, filed Jun. 17, 2014, “Origin Server-Side
Channel in a Content Delivery Framework”.

U.S. Appl. No. 14/307,399, filed Jun. 17, 2014, “Beacon Services in
a Content Delivery Framework”.

U.S. Appl. No. 14/307,404, filed Jun. 17, 2014, “Geographic
Location Determination in a Content Delivery Framework”.

U.S. Appl. No. 14/307,411, filed Jun. 17, 2014, “Content Delivery
Framework Having Fill Services”.

U.S. Appl. No. 14/307,423, filed Jun. 17, 2014, “Content Delivery
Framework Having Storage Services”.

U.S. Appl. No. 14/307,429, filed Jun. 17, 2014, “Content Delivery
Framework Having Origin Services”.

Written Opinion of the International Searching Authority, dated
May 23, 2014, Int’1 Appl. No. PCT/US13/074824, Int’l Filing Date
Dec. 12, 2013, 43 pgs.

Non-Final Office Action, mailed Sep. 10, 2013, U.S. Appl. No.
13/837,821, filed Mar. 15, 2013, 9 pgs.

Non-Final Office Action, mailed Sep. 23, 2013, U.S. Appl. No.
13/838,414, filed Mar. 15, 2013, 23 pgs.

Notice of Allowance, mailed Sep. 13, 2013, U.S. Appl. No.
13/837,216, filed Mar. 15, 2013, 14 pgs.

U.S. Appl. No. 13/714,412, filed Dec. 14, 2012, “Content Delivery
Framework;”.

U.S. Appl. No. 13/714,416, filed Dec. 14, 2012, “Request Process-
ing in a Content Delivery Network”.

U.S. Appl. No. 13/714,417, filed Dec. 14, 2012, “Content Delivery
Framework with Dynamic Service Network Topologies”.

U.S. Appl. No. 13/714,475, filed Dec. 14, 2012, “Framework
Supporting Content Delivery with Reducer Services Network”.
U.S. Appl. No. 13/714,489, filed Dec. 14, 2012, “Framework
Supporting Content Delivery with Collector Services Network”.
U.S. Appl. No. 13/714,510, filed Dec. 14, 2012, “Framework
Supporting Content Delivery with Rendezvous Services Network”.
U.S. Appl. No. 13/714,537, filed Dec. 14, 2012, “Framework
Supporting Content Delivery with Delivery Services Network”.
U.S. Appl. No. 13/714,711, filed Dec. 14, 2012, “Framework
Supporting Content Delivery with Hybrid Content Delivery Ser-
vices”.

US 9,456,053 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 13/714,760, filed Dec. 14, 2012, “Framework
Supporting Content Delivery with Content Delivery Services”.
U.S. Appl. No. 13/714,956, filed Dec. 14, 2012, “Framework
Supporting Content Delivery with Adaptation Services”.

U.S. Appl. No. 13/715,109, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Adaptation Services”.
U.S. Appl. No. 13/715,270, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Adaptation Services”.
U.S. Appl. No. 13/715,304, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Adaptation Services
with Provisioning”.

U.S. Appl. No. 13/715,345, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Adaptation Services
with Feedback”.

U.S. Appl. No. 13/715,466, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Adaptation Services
with Feedback from Health Service”.

U.S. Appl. No. 13/715,590, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Dynamically
Configurable Log Information”.

U.S. Appl. No. 13/715,650, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Delivery Services Hav-
ing Dynamically Configurable Log Information”.

U.S. Appl. No. 13/715,683, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Rendezvous Services
Having Dynamically Configurable Log Information”.

U.S. Appl. No. 13/715,730, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Delivery Services”.
U.S. Appl. No. 13/715,747, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Rendezvous Services”.
U.S. Appl. No. 13/715,780, filed Dec. 14, 2012, “Devices and
Methods Supporting Content Delivery with Reducer Services”.
U.S. Appl. No. 13/802,051, filed Mar. 13, 2013, “Invalidation
Systems, Methods, and Devices”.

U.S. Appl. No. 13/802,093, filed Mar. 13, 2013, “Systems, Methods,
and Devices for Gradual Invalidation of Resources”.

U.S. Appl. No. 13/802,143, filed Mar. 13, 2013, “Maintaining
Invalidation Information”.

U.S. Appl. No. 13/802,291, filed Mar. 13, 2013, “Responsibility-
Based Request Processing”.

U.S. Appl. No. 13/802,335, filed Mar. 13, 2013, “Responsibility-
Based Peering”.

U.S. Appl. No. 13/802,366, filed Mar. 13, 2013, “Responsibility-
Based Cache Peering”.

U.S. Appl. No. 13/802,406, filed Mar. 13, 2013, “Rendezvous
Systems, Methods, and Devices”.

U.S. Appl. No. 13/802,440, filed Mar. 13, 2013, “Event Stream
Collector Systems, Methods, and Devices”.

U.S. Appl. No. 13/802,470, filed Mar. 13, 2013, “Layered Request
Processing in a Content Delivery Network (CDN)”.

U.S. Appl. No. 13/802,489, filed Mar. 13, 2013, “Layered Request
Processing with Redirection and Delegation in a Content Delivery
Network (CDN)”.

U.S. Appl. No. 13/837,216, filed Mar. 15, 2013, “Content Delivery
Framework with Dynamic Service Network Topology”.

U.S. Appl. No. 13/837,821, filed Mar. 15, 2013, “Framework
Supporting Content Delivery with Content Delivery Services”.
U.S. Appl. No. 13/838,414, filed Mar. 15, 2013, “Devices and
Methods Supporting Content Delivery with Adaptation Services
with Feedback”.

U.S. Appl. No. 13/839,400, filed Mar. 15, 2013, “Devices and
Methods Supporting Content Delivery with Adaptation Services
with Feedback”.

U.S. Appl. No. 13/841,023, filed Mar. 15, 2013, “Configuring a
Content Delivery Network (CDN)”.

U.S. Appl. No. 13/841,134, filed Mar. 15, 2013, “Configuring a
Content Delivery Network (CDN)”.

Lipstone, et al., U.S. Appl. No. 14/578,402, filed Dec. 20, 2014,
“Automatic Network Formation and Role Determination in a Con-
tent Delivery Framework”.

Vamey, et al.,, U.S. Appl. No. 14/579,640, filed Dec. 22, 2014,
“Dynamic Fill Target Selection in a Content Delivery Framework”.
Vamey, et al.,, U.S. Appl. No. 14/580,038, filed Dec. 22, 2014,
“Multi-Level Peering in a Content Delivery Framework”.

Vamey, et al.,, U.S. Appl. No. 14/580,086, filed Dec. 22, 2014,
“Multi-Level Peering in a Content Delivery Framework”.

Vamey, et al.,, U.S. Appl. No. 14/583,718, filed Dec. 28, 2014,
“Role-Specific Sub-Networks in a Content Delivery Framework”.
International Search Report, dated Feb. 20, 2013, Int’l Appl. No.
PCT/US12/069712, Int’l Filing Date Dec. 14, 2012, 4 pgs.
Written Opinion, dated Feb. 20, 2013, Int’l Appl. No. PCT/US12/
069712, Int’l Filing Date Dec. 14, 2012, 6 pgs.

Kostadinova, R. , “Peer-to-Peer Video Streaming”, [online;
retrieved on Jan. 25, 2013]; Retrieved from the Internet <URL:
http://www.ee kth.se/php/modules/publications/reports/2008/XR-
EE-LCN__2008_004.pdf>, especially section 5.4.1 2008 , 1-53.
Extended Furopean Search Report, dated Jun. 8, 2015, Application
No. 12857282.3, filed Dec. 14, 2012, 13 pgs.

“NetServ Framework Design and Implementation 1.0”, XML File,
retrieved from Internet May 29, 2015 at http://academiccommons.
columbia.edu/download/fedora_ content/show_ pretty/ac: 135426/
CONTENT/ac135426__description.xml?data=meta Nov. 16, 2011 ,
4 pgs.

Lee, Jac W. et al., “NetServ Framework Design and Implementation
1.0, Columbia University Computer Science Technical Reports
retrieved from Internet on May 29, 2015 Nov. 16, 2012 , pp. 1-15.
Yin, Hao et al., “Design and Deployment of a Hybrid CDN-P2P
System for Live Video Streaming: Experiences with LiveSky”,
Proceedings of the Seventeen ACM International Conference on
Multimedia Jan. 1, 2009 , pp. 25-34.

Advisory Action, dated Jan. 13, 2016, U.S. Appl. No. 13/715,466,
filed Dec. 14, 2012, 3 pgs.

Advisory Action, dated Jan. 8, 2016, U.S. Appl. No. 13/802,291,
filed Mar. 13, 2013, 3 pgs.

Final Office Action, dated Dec. 15, 2015, U.S. Appl. No.
13/802,366, filed Mar. 13, 2013, 31 pgs.

Final Office Action, dated Dec. 15, 2015, U.S. Appl. No.
13/802,489, filed Mar. 13, 2013, 28 pgs.

Final Office Action, dated Dec. 21, 2015, U.S. Appl. No.
13/715,590, filed Dec. 14, 2012, 10 pgs.

Final Office Action, dated Dec. 21, 2015, U.S. Appl. No.
13/715,747, filed Dec. 14, 2012, 6 pgs.

Final Office Action, dated Jan. 30, 2014, U.S. Appl. No. 13/837,821,
filed Mar. 15, 2013, 7 pgs.

Final Office Action, dated Jul. 10, 2015, U.S. Appl. No. 13/802,470,
filed Mar. 13, 2013, 30 pgs.

Final Office Action, dated Jun. 23, 2015, U.S. Appl. No. 13/715,590,
filed Dec. 14, 2012, 9 pgs.

Final Office Action, dated Jun. 25, 2015, U.S. Appl. No. 13/715,466,
filed Dec. 14, 2012, 9 pgs.

Final Office Action, dated Jun. 29, 2015, U.S. Appl. No. 13/715,345,
filed Dec. 14, 2012, 31 pgs.

Final Office Action, dated May 22, 2015, U.S. Appl. No.
13/841,023, filed Mar. 15, 2013, 7 pgs.

Final Office Action, dated Nov. 17, 2015, U.S. Appl. No.
13/802,291, filed Mar. 13, 2013, 29 pgs.

Final Office Action, dated Nov. 25, 2015, U.S. Appl. No.
13/715,466, filed Dec. 14, 2012, 8 pgs.

Final Office Action, dated Oct. 1, 2015, U.S. Appl. No. 13/715,590,
filed Dec. 14, 2012, 10 pgs.

Final Office Action, dated Oct. 22, 2015, U.S. Appl. No. 13/802,335,
filed Mar. 13, 2013, 26 pgs.

Final Office Action, dated Oct. 30, 2015, U.S. Appl. No. 13/802,051,
filed Mar. 13, 2013, 13 pgs.

Final Office Action, dated Sep. 11,2015, U.S. Appl. No. 13/802,143,
filed Mar. 13, 2013, 33 pgs.

Final Office Action, dated Feb. 1, 2016, U.S. Appl. No. 14/579,640,
filed Dec. 22, 2014, 24 pgs.

Non-Final Office Action, dated Apr. 1, 2015, U.S. Appl. No.
13/714,412, filed Dec. 14, 2012, 11 pgs.

US 9,456,053 B2

Page 5
(56) References Cited Non-Final Office Action, dated Jun. 26, 2015, U.S. Appl. No.
13/714,411, filed Dec. 14, 2012, 19 pgs.
OTHER PUBLICATIONS Non-Final Office Action, dated Jun. 29, 2015, U.S. Appl. No.

)) 13/714,410, filed Dec. 14, 2012, 19 pgs.
Non-Final Office Action, dated Aug. 14, 2015, U.S. Appl. No. Non-Final Office Action, dated Jun. 4, 2015, U.S. Appl. No.

14/088,362, filed Nov. 23, 2013, 29 Pgs. 13/802,366, filed Mar. 13’ 2013’ 27 pgs.

Non-Final Office Action, dated Dec. 10, 2015, U.S. Appl. No. Non-Final Office Action, dated May 12, 2015, U.S. Appl. No.
14/105,981, filed Dec. 13, 2013, 17 pgs. 13/802,291, filed Mar. 13’ 2013’ 25 pgs.

Non-Final Office Action, dated Dec. 19, 2014, U.S. Appl. No. Non-Final Office Action, dated May 21, 2015, U.S. Appl. No.
13/715,270, filed Dec. 14, 2012, 6 pgs. 13/802,335, filed Mar. 13, 2013, 34 pes.

Non-Final Office Action, dated Dec. 23, 2015, U.S. Appl. No. Non-Final Office Action, dated May 6, 2015, U.S. Appl. No.
13/802,143, filed Mar. 13, 2013, 33 pes. 13/802,143, filed Mar. 13, 2013, 32 pgs.

Non-Final Office Action, dated Dec. 3, 2015, U.S. Appl. No. Non-Final Office Action, dated May 7, 2015, U.S. Appl. No.
13/838.414, filed Mar. 15, 2013, 9 pes. 13/838,414, filed Mar. 15, 2013, 7 pgs.

Non-Final Office Action, dated Dec. 4, 2014, U.S. Appl. No. Non-Final Office Action, dated Nov. 15, 2015, U.S. Appl. No.
13/715,345, filed Dec. 14, 2012, 30 pgs. 13/715,780, filed Dec. 14’ 2012’ 9 pgs.

Non-Final Office Action, dated Dec. 4, 2014, U.S. Appl. No. Non-Final Office Action, dated Nov. 20, 2014, U.S. Appl. No.
13/838,414, filed Mar. 15, 2013, 8 pgs. 13/715730, filed Dec. 14, 2012, 6 pgs.

Non-Final Office Action, dated Dec. 5, 2014, U.S. Appl. No. Non-Final Office Action, dated Nov. 25, 2015, U.S. Appl. No.
13/839,400, filed Mar. 15, 2013, 20 pgs. 13/714,760, filed Dec. 14, 2012, 8 pgs.

Non-Final Office Action, dated Feb. 12, 2015, U.S. Appl. No. Non-Final Office Action, dated Nov. 5, 2015, U.S. Appl. No.
13/841,134, filed Mar. 15, 2013, 7 pgs. 14/088,356, filed Nov. 23, 2013, 28 pgs.

Non-Final Office Action, dated Feb. 13, 2015, U.S. Appl. No. Non-Final Office Action, dated Oct. 31, 2014, U.S. Appl. No.
13/841,023, filed Mar. 15, 2013, 6 pgs. 13/802,051, filed Mar. 13, 2013, 12 pgs.

Non-Final Office Action, dated Feb. 26, 2015, U.S. Appl. No. Non-Final Office Action, dated Sep. 12, 2014, U.S. Appl. No.
13/714,760, filed Dec. 14, 2012, 10 pgs. 13/714,475, filed Dec. 14, 2012, 5 pgs.

Non-Final Office Action, dated Jan. 11, 2016, U.S. Appl. No. Non-Final Office Action, dated Sep. 12, 2014, U.S. Appl. No.
14/088,542, filed Nov. 25, 2013, 30 pgs. 13/714,489, filed Dec. 14, 2012, 5 pgs.

Non-Final Office Action, dated Jan. 15, 2016, U.S. Appl. No. Non-Final Office Action, dated Sep. 12, 2014, U.S. Appl. No.
13/802,093, filed Mar. 13, 2013, 11 pgs. 13/714,510, filed Dec. 14, 2012, 5 pgs.

Non-Final Office Action, dated Jan. 15, 2016, U.S. Appl. No. Non-Final Office Action, dated Sep. 12, 2014, U.S. Appl. No.
14/307,374, filed Jun. 17, 2014, 22 pgs. 13/714,537, filed Dec. 14, 2012, 5 pgs.

Non-Final Office Action, dated Jan. 22, 2015, U.S. Appl. No. Non-Final Office Action, dated Sep. 12, 2014, U.S. Appl. No.
13/715,590, filed Dec. 14, 2012, 8 pgs. 13/714,956, filed Dec. 14, 2012, 5 pgs.

Non-Final Office Action, dated Jan. 22, 2016, U.S. Appl. No. Non-Final Office Action, dated Sep. 14, 2015, U.S. Appl. No.
13/715,345, filed Dec. 14, 2012, 22 pgs. 13/802,406, filed Mar. 13, 2013, 17 pgs.

Non-Final Office Action, dated Jan. 26, 2015, U.S. Appl. No. Non-Final Office Action, dated Sep. 18, 2014, U.S. Appl. No.
13/714,416, filed Dec. 14, 2012, 14 pgs. 13/715,109, filed Dec. 14, 2012, 5 pgs.

Non-Final Office Action, dated Jan. 27, 2015, U.S. Appl. No. Non-Final Office Action, dated Sep. 25, 2015, U.S. Appl. No.
13/715,455, filed Dec. 14, 2012, 10 pgs. 14/094,868, filed Dec. 3, 2013, 17 pgs.

Non-Final Office Action, dated Jan. 4, 2016, U.S. Appl. No. Non-Final Office Action, dated Feb. 2, 2016, U.S. Appl. No.
14/303,389, filed Jun. 12, 2014, 17 pgs. 14/303,314, filed Jun. 12, 2014, 18 pgs.

Non-Final Office Action, dated Jan. 5, 2015, U.S. Appl. No. Non-Final Office Action, dated Feb. 2, 2016, U.S. Appl. No.
13/715,304, filed Dec. 14, 2012, 6 pgs. 14/307,380, filed Jun. 17, 2014, 21 pgs.

Non-Final Office Action, dated Jan. 5, 2015, U.S. Appl. No. Notice of Allowance, dated Apr. 10, 2015, U.S. Appl. No.
13/715,683, filed Dec. 14, 2012, 6 pgs. 13/714,510, filed Dec. 14, 2012, 11 pgs.

Non-Final Office Action, dated Jan. 5, 2016, U.S. Appl. No. Notice of Allowance, dated Apr. 10, 2015, U.S. Appl. No.
14/088,358, filed Nov. 23, 2013, 18 pgs. 13/841,134, filed Mar. 15, 2013, 8 pgs.

Non-Final Office Action, dated Jan. 5, 2016, U.S. Appl. No. Notice of Allowance, dated Apr. 14, 2015, U.S. Appl. No.
14/088,367, filed Nov. 23, 2013, 27 pgs. 13/714,537, filed Dec. 14, 2012, 12 pgs.

Non-Final Office Action, dated Jan. 6, 2016, U.S. Appl. No. Notice of Allowance, dated Apr. 15, 2015, U.S. Appl. No.
13/802,335, filed Mar. 13, 2013, 26 pgs. 13/714,489, filed Dec. 14, 2012, 11 pgs.

Non-Final Office Action, dated Jan. 7, 2015, U.S. Appl. No. Notice of Allowance, dated Apr. 15, 2015, U.S. Appl. No.
13/715,650, filed Dec. 14, 2012, 6 pgs. 13/714,956, filed Dec. 14, 2012, 11 pgs.

Non-Final Office Action, dated Jan. 7, 2015, U.S. Appl. No. Notice of Allowance, dated Apr. 15, 2015, U.S. Appl. No.
13/802,470, filed Mar. 13, 2013, 37 pgs. 13/715,270, filed Dec. 14, 2012, 9 pgs.

Non-Final Office Action, dated Jul. 10, 2015, U.S. Appl. No. Notice of Allowance, dated Apr. 2, 2014, US. Appl. No.
13/714,417, filed Dec. 14, 2012, 7 pgs. 13/838,414, filed Mar. 15, 2013, 17 pgs.

Non-Final Office Action, dated Jul. 17, 2015, U.S. Appl. No. Notice of Allowance, dated Apr. 22, 2014, U.S. Appl. No.
13/802,440, Mar. 13, 2013, 22 pgs. 13/837,821, filed Mar. 15, 2013, 7 pgs.

Non-Final Office Action, dated Jul. 20, 2015, U.S. Appl. No. Notice of Allowance, dated Apr. 24, 2015, U.S. Appl. No.
13/715,747, filed Dec. 14, 2012, 10 pgs. 13/715,109, filed Dec. 14, 2012, 10 pgs.

Non-Final Office Action, dated Jul. 31, 2015, U.S. Appl. No. Notice of Allowance, dated Apr. 28, 2015, U.S. Appl. No.
14/580,086, filed Dec. 22, 2014, 23 pgs. 13/715,304, filed Dec. 14, 2012, 9 pgs.

Non-Final Office Action, dated Jul. 8, 2015, U.S. Appl. No. Notice of Allowance, dated Aug. 14, 2015, U.S. Appl. No.
14/579,640, filed Dec. 22, 2014, 26 pgs. 13/714,510, filed Dec. 14, 2012, 10 pgs.

Non-Final Office Action, dated Jun. 19, 2015, U.S. Appl. No. Notice of Allowance, dated Aug. 27, 2015, U.S. Appl. No.
14/580,038, filed Dec. 22, 2014, 21 pgs. 13/715,650, filed Dec. 14, 2012, 4 pgs.

Non-Final Office Action, dated Jun. 2, 2015, U.S. Appl. No. Notice of Allowance, dated Aug. 28, 2015, U.S. Appl. No.
13/802,051, filed Mar. 13, 2013, 11 pgs. 13/714,489, filed Dec. 14, 2012, 11 pgs.

Non-Final Office Action, dated Jun. 25, 2015, U.S. Appl. No. Notice of Allowance, dated Aug. 3, 2015, U.S. Appl. No.
13/839,400, filed Mar. 15, 2013, 19 pgs. 13/714,537, filed Dec. 14, 2012, 11 pgs.

US 9,456,053 B2
Page 6

(56)

References Cited

OTHER PUBLICATIONS

Notice of Allowance, dated Aug. 6,
13/841,134, filed Mar. 15, 2013, 8 pgs.
Notice of Allowance, dated Dec. 10,
13/714,711, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Dec. 16,
13/714,412, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Dec. 16,
13/714,416, filed Dec. 14, 2012, 7 pgs.
Notice of Allowance, dated Dec. 16,
13/715,109, filed Dec. 14, 2012, 10 pgs.
Notice of Allowance, dated Dec. 16,
13/715,683, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Dec. 18,
13/714,475, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Dec. 21,
13/715,304, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Dec. 23,
13/714,489, filed Dec. 14, 2012, 12 pgs.
Notice of Allowance, dated Dec. 3,
13/715,270, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Dec. 30,
13/841,023, filed Mar. 15, 2013, 9 pgs.
Notice of Allowance, dated Dec. 4,
13/715,650, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Dec. 4,
13/837,821, filed Mar. 15, 2013, 7 pgs.
Notice of Allowance, dated Dec. 4,
13/841,134, filed Mar. 15, 2013, 8 pgs.
Notice of Allowance, dated Dec. 7,
13/714,956, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Dec. 9,
13/715,730, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Jan. 12,
13/837,821, filed Mar. 15, 2013, 7 pgs.
Notice of Allowance, dated Jan. 12,
13/714,410, filed Dec. 14, 2012, 6 pgs.
Notice of Allowance, dated Jan. 13,
13/714,537, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Jan. 13,
13/714,411, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Jan. 21,
13/714,510, filed Dec. 14, 2012, 10 pgs.
Notice of Allowance, dated Jan. 22,
13/714,711, filed Dec. 14, 2012, 6 pgs.
Notice of Allowance, dated Jul. 10,
13/715,109, filed Dec. 14, 2012, 9 pgs.
Notice of Allowance, dated Jul. 17,
13/714,711, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Jul. 17,
13/715,270, filed Dec. 14, 2012, 5 pgs.

2015,
2015,
2015,
2015,
2015,
2015,
2015,
2015,
2015,
2015,
2015,
2015,
2015,
2015,
2015,
2015,
2015,
2016,
2016,
2016,
2016,
2015,
2015,
2015,

2015,

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

Notice of Allowance, dated Jul. 6, 2015, U.S. Appl. No.

filed Dec. 14, 2012, 5 pgs.

Notice of Allowance, dated Jun. 11,
13/714,510, filed Dec. 14, 2012, 10 pgs.
Notice of Allowance, dated Jun. 18,
13/715,304, filed Dec. 14, 2012, 5 pgs.

Notice of Allowance, dated Jun. 19,
13/714,475, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Jun. 19,
13/715,683, filed Dec. 14, 2012, 5 pgs.

Notice of Allowance, dated Jun. 19,
13/715,730, filed Dec. 14, 2012, 5 pgs.

Notice of Allowance, dated Jun. 22,
13/714,489, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Jun. 22,
13/714,956, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Jun. 5,
13/714,537, filed Dec. 14, 2012, 11 pgs.

2015,
2015,
2015,
2015,
2015,
2015,
2015,

2015,

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

U.s.

Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
13/715,650,
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.

Appl.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

Notice of Allowance, dated Jun. 5,
13/715,270, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Jun. 5,
13/715,650, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated May I,
13/714,475, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated May 13,
13/714,711, filed Dec. 14, 2012, 10 pgs.
Notice of Allowance, dated May 5,
13/715,650, filed Dec. 14, 2012, 9 pgs.
Notice of Allowance, dated May 6,
13/715,683, filed Dec. 14, 2012, 9 pgs.
Notice of Allowance, dated May 6,
13/715,730, filed Dec. 14, 2012, 9 pgs.
Notice of Allowance, dated Nov. 21,
13/714,711, filed Dec. 14, 2012, 6 pgs.
Notice of Allowance, dated Nov. 24,
13/837,821, filed Mar. 15, 2013, 7 pgs.
Notice of Allowance, dated Nov. 24,
13/714,417, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Nov. 9,
13/841,023, filed Mar. 15, 2013, 9 pgs.
Notice of Allowance, dated Nov. 9,
13/841,134, filed Mar. 15, 2013, 8 pgs.
Notice of Allowance, dated Oct. 22,
13/838,414, filed Mar. 15, 2013, 7 pgs.
Notice of Allowance, dated Sep. 12,
13/714,711, filed Dec. 14, 2012, 10 pgs.
Notice of Allowance, dated Sep. 14,
13/715,270, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Sep. 14,
13/715,304, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Sep. 14,
13/715,683, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Sep. 14,
13/715,730, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Sep. 16,
13/714,475, filed Dec. 14, 2012, 10 pgs.
Notice of Allowance, dated Sep. 17,
13/714,412, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Sep. 17,
13/714,537, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Sep. 18,
13/714,956, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Sep. 18,
13/837,821, filed Mar. 15, 2013, 8 pgs.
Notice of Allowance, dated Sep. 22,
13/715,109, filed Dec. 14, 2012, 10 pgs.
Notice of Allowance, dated Sep. 25,
13/715,650, filed Dec. 14, 2012, 5 pgs.
Notice of Allowance, dated Sep. 28,
13/714,510, filed Dec. 14, 2012, 10 pgs.
Notice of Allowance, dated Sep. 30,
13/714,711, filed Dec. 14, 2012, 11 pgs.
Notice of Allowance, dated Sep. 4,
13/714,416, filed Dec. 14, 2012, 14 pgs.
Notice of Allowance, dated Sep. 5,
13/837,821, filed Mar. 15, 2013, 9 pgs.
Final Office Action, dated Feb. 26,
14/088,362, filed Nov. 23, 2013, 31 pgs.
Final Office Action, dated Feb. 26,
14/307,404, filed Jun. 17, 2014; 17 pgs.

Non-Final Office Action, dated Feb. 26,

14/580,086, filed Dec. 22, 2014, 27 pgs.

Non-Final Office Action, dated Mar. 14,

14/105,915, filed Dec. 13, 2013, 27 pgs.

Non-Final Office Action, dated Mar. 16,

13/839,400, filed Mar. 15, 2013, 21 pgs.

Non-Final Office Action, dated Mar. 24,

14/302,944, filed Jun. 12, 2014, 7 pgs.

2015, U.S.
2015, U.S.
2015, U.S.
2015, U.S.
2015, U.S.
2015, U.S.
2015, U.S.
2014, US.
2014, US.
2015, US.
2015, U.S.
2015, U.S.
2015, U.S.
2014, US.
2015, US.
2015, US.
2015, US.
2015, US.
2015, US.
2015, US.
2015, US.
2015, US.
2015, US.
2015, US.
2015, US.
2015, US.
2015, US.
2015, US.
2014, US.
2016, U.S.

2016, U.S.

2016, U.S.
2016, U.S.
2016, U.S.

2016, U.S.

Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.

Appl.

Appl.
Appl.
Appl.

Appl.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

US 9,456,053 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

“Overview of recent changes in the IP interconnection ecosystem”,
Analysys Mason May 2011, 47 pgs.

“What Every Service Provider Should Know About Federated
CDNs”, SkytideIP Video Management Analytics Jun. 19, 2011, 12
pgs.

“Wholesale Content Delivery Networks: Unlocking New Revenue
Streams and Content Relationships”, Cisco—White Paper, Cisco
and/or its affiliates 2012, pp. 1-16.

Bartolini, N. et al., “A Walk Through Content Delivery Networks”,
MASCOTS 2003, LNCS 2965 2004, pp. 1-25.

Buyya, R. et al., “Content Delivery Networks”, Springer-Verlag
Berlin Heidelberg; ISBN:978-3-540-77886-8 2008, 429 pgs.

Pathan, A-M K. et al, “A Taxonomy and Survey of Content
Delivery Networks”, 2011, pp. 1-44.

Puopolo, S. et al., “Content Delivery Network (CDN) Federations:
How SPs Can Win the Battle for Content-Hungry Consumers”,
Cisco Internet Business Solutions Group (IBSG); Point of View
2011, 9 pgs.

Sun, P. et al,, “Identifying Performance Bottlenecks in CDNs
through TCP-Level Monitoring”, Dept. of Computer Science,
Princeton University Aug. 19, 2011, 6 pgs.

Chinese Examination Report, dated Feb. 24, 2016, Application No.
201280061712.3, filed Dec. 14, 2012, 40 pgs.

Wang, Weiwei et al., “The Study Summarize for Distribution
Technology of Streaming Media under the Basement of CDN”,
Computer Engineering and Applicationvol. 40, No. 8 2004, 7 pgs.

* cited by examiner

US 9,456,053 B2

Sheet 1 of 43

Sep. 27, 2016

U.S. Patent

NOLLYHLSININGY
/ INIWIHNSYIAW
/ NOULYE3dO

SNONZAANTY

FO1 SNOAZIANTY

80T
0D
TOYINOD
H0103T10D
U-901
907 (S)d0oLD3ITI0D

FHOVYD
1-¢01 -

Z01 S3HOYD

007 (NGD) YyOMLAN AM3AINAJ INIINOD

US 9,456,053 B2

Sheet 2 of 43

Sep. 27, 2016

U.S. Patent

a-F0e
¥3ILSNTD

IHOVD)

&v0e 1-v0e

oo ¥3LsN10 ¥3LSN1D
IHOVD IHOVD
VAN

7

902
WSINVHOIN
ONILNOY

¢0¢ 341G J3LSNTD FHOVY

Y41} 3 m:._u<9h

Y0z (S)u3isn1s IHOVY

¥0¢
¥3LSNTID

IHOYD

I

LS

90¢
WSINVHOIN

ONLLNOY

07 3LiS ¥3LSN1D IHOVD

Z "bid

US 9,456,053 B2

Sheet 3 of 43

Sep. 27, 2016

U.S. Patent

X-80¢
¥IAHAS

N

*09 ‘Nﬂcw‘qm
¥IANAS

1-80¢
YIANIG

|

01e
HOLIMS

F0Z ¥ai1sn1o FHOVH

\.J
/

¥ic
S ERNE
ONINVINLS

f4%4
(s)y3anyas
ONIHOVD

J

802 (s)d3nu3g

[s]%4
WSINVYHOIN
ONILNOY

0¢ YALSNTD FHOVD

P "bid

US 9,456,053 B2

Sheet 4 of 43

Sep. 27, 2016

U.S. Patent

vavevarava,

«P0Z HILSNTD FHOVD

JFle
N ERNEL
ONINYIYLG

U

™

RAY4
(s)¥3any3ag
ONIHOV?)

B0 (s)uasuag

wC0¢ ALIS HALSNTY mIU<O;

‘-o W\N
NSINVHOZ
ONILNOY

U.S. Patent Sep. 27, 2016 Sheet 5 of 43 US 9,456,053 B2

ONTROL

CORE
108

CC4

CC5

US 9,456,053 B2

Sheet 6 of 43

Sep. 27, 2016

U.S. Patent

N dNOYD |
GHOVD o u m

{1 ¥311) SFHOVD 3503

i dNOXD FHOV] 3903

. = -—m:o<o T:ox\o

aoag | | 3mag

i

FHOVD) g & mf| 3HOVD

(Z 5311} SFHOVS INFHV

W dnods) | Z dno¥n |

IHOV) |
AINZHVY |

_iNguvd | CANmavd [T

. w u 3HOVO | 3HOVD
INTHYY | | INTHvd

M dNOWD) |
AHOVD

SIHOVD £ 3L

Z dnoyyn | b dnous
FHOVD | FHOVD
“““ guay | cwumy

{$)aHovo r y¥34

-

314 NIDINO NGO

001 (N@D) YHOMIIN AMIAAQ INILINOD

US 9,456,053 B2

Sheet 7 of 43

Sep. 27, 2016

U.S. Patent

|
!
!
!
!
t—-
|
L
!
!
!
]
]
|-
4
!
!
]
!
!
!
!
!
|
!
|
!
!
]
!
!
|
!
+

]
b

L
|
:

—
—]
—t

—
|
|
|
|
|
|
|
|
|
|
‘A
&
| w
x
| C
&
O
'—:
[+
=
-
|
|
Az

| —

U dNoYD)
IHIVY
RN

Z dnouo
FHOVD
R T]

| dNou

AHOYD
cual

(s)aHovn ¢ u3IL

T
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
[
-

-t *N
U dNO¥H Z danowo | | _ _ M
AHDYD AHOVD) I (§ 3HOVO B = = FHOVD OVD |
INTHVY e b LNV INTYVYd | | INFHvd Ll
........ | xmsmonwavg !

T |

| 1Y
| !
U dnouy M E N e amovey | 1!
FHOVO FHIVY Il 3003 3nag g0ag | I
3903 _ i
_ (1 ¥3i1) s3HoVD 3903 _ W

I_f IIIIIIII y dnods -~~~ T T T .w

US 9,456,053 B2

::::::::::::::::::::::::::::::::::

$it ¢S N [J%
W3LSAS SNG | IS INTTD
|
..\ //V w \ //,//
ges 7
" _ ees

Sheet 8 of 43

SNOAZIANTY

.

vOl G0T (NGD) »HOMLIN AYIAITIQ LNIINOD

Sep. 27, 2016

U.S. Patent

. 3
b 4%
—CS—> \H. HAAIAOH
ke INTFINOD

US 9,456,053 B2

Sheet 9 of 43

Sep. 27, 2016

U.S. Patent

(s)3™00
JOMLNOD v

AN

/

(S)d3anyas
NIDRIO

<t

b

=

\\\rllu//
///% y

[,

(8)aHov)
)

N
-~

(s)aouno
bLE

w

viv(Q

O

e vivda
4<mom OI4103dS |
0 -43noLsnY |
Okt Ll
Jsvavivd 901t
@
ISNOdSTY
/ 1S3INOFY 1404 INTD
s |\ «—1SINOTY— S
ottt J // R
¥IAHIS
AL

"pansesal syybu iy 011"

o
SUOHRIIUNWIWOD € joA8T L10Z (D) F F _ m

US 9,456,053 B2

Sheet 10 of 43

Sep. 27, 2016

AMIYA ATM
"B14
. . ¢ "Bl
INA ATM
ANTVA AZH
{NX) LO3IraQ NOILOVSNYY] BOZ1

4
INWA AT INTVA ATN
INTYA AT INTYA ATM

1
INTVA ATM INTVA A
(NXS) 103090 NOISS3S 9021 103raQ 310N F0C1

U.S. Patent

azi "bi3 vel "6

US 9,456,053 B2

Sheet 11 of 43

Sep. 27, 2016

U.S. Patent

veEl "bBid

SININNOYY HITANVH
0Ll
N# H L#
HYITANVYH “n YIIONVH | HIANVH
N-20tl ¢-e0el b-c0cl

(S)u31aNvYH Z0E L

103rgQ T0YLNOD IONINDIS L 0L

US 9,456,053 B2

Sheet 12 of 43

Sep. 27, 2016

U.S. Patent

N#

HATANVH

N-20El

—LINSTYH—»

—1SIN0TY—

JONINOIS FHL 4O 1NO,,
— NS —P cH —— 1 INST— L#
HITANVH YI1ANYH
iSO Fger [T TeoEn

-¢

FONINDIS IHL 0L NI,

acl "bid

3ON3ND3S

US 9,456,053 B2

Sheet 13 of 43

Sep. 27, 2016

U.S. Patent

\ﬁmozm:cmw

P

A'ZH# —1TNS TN
HITAONVH UITANVH
STEZ0ET SISO TonET
N NS 3N — e | IS T b
HATANVH .
N-Z081 -1 SINOIY~ -af— | SIANOTY—

HINANVH

¢c0eL

cH#

e INS 3P

1 SINOA Y

JONINDIS IHL 40 1NO,
JONINDIS IHL 0L NI

L

HITANVH

1-c0El

L 3ON3ND3IS

o¢cl "bid

US 9,456,053 B2

Sheet 14 of 43

Sep. 27, 2016

U.S. Patent

L'ZZ# FONaNO3AS b m

Z'Z# 3ION3INDIS

L'Z# FON3INO3S

cH L#
S HITANVH WIIANVH | } 3ON3INO3S
¢-cQel L-20gl
3JON3INDIS FHL 40 LNO, .

JONINOIS IHL ,OL NI,

acli "bii

US 9,456,053 B2

Sheet 15 of 43

Sep. 27, 2016

U.S. Patent

LINGNS-NYHD

JONINOIS IHL J0 LNO,

L NS T

SAan
@—1SANOIH—

LTINS T

g1 SIAN0IY—

v "bid

JONINOIS IHL OL NI,

HOLINOW-AH3AIN3G

avl "bi3

LINENS-NYHD

——11NSTY—>

<f—] SINDITY—

JONINDIS IHL 0L NI,

JONINOIS THL O LNO, e -

HOLINOW~-AHIANZJ

US 9,456,053 B2

Sheet 16 of 43

Sep. 27, 2016

U.S. Patent

FONINOIS IHL 4O LNO,,

\Aj

d3d344ng
-01-10341d

L NS 3P

-1 S3NDI Y~

HOLINOW
~Ad3INTEAJ

arvi b4

—NLINS T — NLINST b
&, 1SN0 «NLSIN0IY—

LINGNS-NVHD . Gan .
—,0LINST- ey 0 LTINS T
-, () 1LSINDITH -4, 1SANOIHY—

-} IONINDIS IHL OL Ni,
JONINDIS AL 40 LNO,

——— 1 INST3 M —P» ——11NS3 3 —p»

LINGNS-NVHD) San
— 1 SINOIY— - | SINOTH—

-4 JONINOD3S IHL OL NI,

ov1L "bid

Q3434403
-01-103¥id

— 1 NSy —)

-1 S3N0TH—]

HOLINOW
-ALINNTEG

US 9,456,053 B2

Sheet 17 of 43

Sep. 27, 2016

U.S. Patent

vsi b1

SIAHIOVO
HIHLO WOYL Viv(NiVL8(Q ‘3HIVD

8041

A

JHOVD WOHA
VLV NIVIE0 :3H0D TOYINOD
0g

<o)
—

J

IHOD TOHINOD WONH VIV(Q
NOILYHNDIINOD NIVLE(Q :3HOV)

y0G1

A

FAOD T0HLNOD HLIM H3ILSIOFY

¢0sL

|

US 9,456,053 B2

Sheet 18 of 43

Sep. 27, 2016

U.S. Patent

SO HLUIM JONVYAHOOOV

NI 30¥NOS3Y JAYIS |t

cGl

dJ3d3d3aN
41 304N0S3Y NivLaQO

LGl

a3a3aN 41 §OD NIVLFO

REERYCERS

PiGi

39 NVO 183N03Y

HIHLIHM ININGZ LI

"g3a3IaN 4t QOO NIVLED

(A

g ——
LGl

183N0IY NIvIiaQ

dagl "bid

US 9,456,053 B2

Sheet 19 of 43

Sep. 27, 2016

U.S. Patent

801

0D TOUINOD

L3N TOHLNOD /
woud 1iNd SdilH

201
IHOVD

201
IHOVY

/ N\ N\

0t
JHOVD

Z01
3HOVD

Z01
FHOVD

US 9,456,053 B2

Sheet 20 of 43

Sep. 27, 2016

U.S. Patent

= (0aN) | w
c F - m UOLOFTIOD | $907 |
- vivg 1} IN3INOD |
MHOMIAN | M _
N INBWIHNSYAW S
//,/ \\.\ Ow \ f
T /// 140d ‘ dllH
\ I 8007 -
NIDFIEV] IHOD HIAMIG IHOVO S3A0U—
, JOUINOD S QVO Y IVANY/STIEV L I
////‘!wvlv\w L - ~ // . P v
~ V7 ol oiiu
1804 71 SdliH
_ evy |
pEou
SHIAYIG SdliH
SYIAYIS NIDBIO
NIDIHO
Y .‘.; ..
SY¥33d

"panIesal SYBY iy 0T ‘SUONESILNWILOD € {2487 L10Z ()

US 9,456,053 B2

Sheet 21 of 43

Sep. 27, 2016

U.S. Patent

SFTINAON
FHOVO HOMY 30 NOLLVZINYVOYUQO

!

Y

ZC/ 1 asvaainy ~

L4l d3sdvd d11H ~

HILLVWHO 4 d11H

‘paAIRsal SIYBU fly "D 'SUCHEDIUNWIWIOD € 18A8T L 10T (0) MW
4 _
_ O1Z] 43DVYNVIN NOILOINNOD DNIODLNO _
— _ -
9l vLLL

R HILLYWYOS d11H H3ISHVd dLLH o
= _ e _ W3
a ZT7T H3IDYNYW T4 #
Q 7y m
O p—
S |
o mw ERTT B el N
& Y 907} < L]
ja el

@ g 0 TANNYHO LSTHINVIA »| HIOVNVA g
7] 2 & JHOLG e BN
E: S 222V X3N] = } o
z : 1« »ﬁv 8071 -
X I < _ +
C e
3 o _ ZEENEE _ NIZIOZLVYLS
i _ M V8019 L
T
=z

YAWA?

8L /1L YADVYNYIN NOLLOINNOD ONINOON] _
|

Y

0/ 1 IALNOIXI

i

Ll "Bi4

US 9,456,053 B2

Sheet 22 of 43

Sep. 27, 2016

U.S. Patent

9081
VNANOr

NOILLYQITVYANI
¥INOISND

8081
IvNENOr

HILSVIA

2081
$103rgo
"O14NOD
WILSAS

y08l
103rgo

"OI4NOD
¥IWOLSND

801
400

TOYLNOD

gL "bi1J3

US 9,456,053 B2

Sheet 23 of 43

Sep. 27, 2016

U.S. Patent

61

916}

T1av] ¥3IAYIG-0D

a1avl g3ns

clel

(009) 1o3rean
"OIANOD VE0T1D

(o]
[
[«
—

A9V dIA

gibt
3navy Y3grosens

061

by

ER:VARSETRIARTS)

06l

aavy i8S

06

F1av] LSOH

201 SLO3rg0 "OidNOD NILSAS

US 9,456,053 B2

Sheet 24 of 43

Sep. 27, 2016

U.S. Patent

SO0 N

A

SSO HOLFA
HO FLVAINYA

NOILJIOXI-009
"MOOH

¢,SAONINOIS ANVA

800¢
009 Ni Hivd

‘180H “1000L0Hd aNi4

f

S3A

voz "biJ

’L
P
B

900¢
009 HOLAd HO ILVAYA

«——ON

002
, QYA 0D

200¢
ISV MV WHO3H3d

US 9,456,053 B2

Sheet 25 of 43

Sep. 27, 2016

U.S. Patent

03Y L3ddHILIN]

A

g0z "bid

-4—ST\ ON—» OIY-14 HOOH
SSIN-IHOVYD MOOH
i ON
ON
ST A SATHOVD
LANAVIHOVD
S3IA £ASNOJSTY S R—

D310 MOOH

US 9,456,053 B2

Sheet 26 of 43

Sep. 27, 2016

U.S. Patent

G

diNNd=IN3IT0 MOOH

A

dSIFH-LINIITT HOOH

1

JENOJSTY
ATNONOCOIY

A

202 "bid

dANd-T1d MO0H

3

S3A

J31avanovo

dS3axd-1id MOOH

A

S3A

ISNOLS3Y T4 NIVLE(

—vosy >
(o)

US 9,456,053 B2

Sheet 27 of 43

Sep. 27, 2016

U.S. Patent

HOLO3TIOD
NIDINO

IHOVD)

TOHLINOD
CELER

o &<

vie "bid

"pantasal SIYBU |y "D 'SUCHBOIUNWILOD € [8A8T 1102

(9

000Q0Q0O0

U.S. Patent Sep. 27, 2016 Sheet 28 of 43 US 9,456,053 B2

5
I
o £ W Z
=z = 5 ¢ 3
OO<01C>
g} a © O 0O 0
a
™
L Q0 @<

Fig. 21B

(c) 2011 Level 3 Communications, LLC. All rights reserved.

KeEeReRsN:N=ReNaNeNeReNe)

000000 ONONOEOOY
QOOORLOLOOOOLOOOOLOOOQ
QOOOCOOLVPROODOEOHLOLLOLLLOROO
DOOROCRLODLOOOORLRLROLOOOOOV
D0O0ROLOOONVDLOEDOORLLOBLYVOOOODLO®
CHOO0COONELLOLOENOROHOLOLOOOOHOHORHE
OO0 OHLOOHLLOEVOLLHLEOOODOOOOLLOOEY
QODOLORLOVEOHLOOLOLLLOOLOOOLOLLOOLOO
000O00CORACOOEODOHOLOLDHOOODOODHOHORLODLOO
QO00O0O0OROROCOVLOYHOROHALOLOOOORLOOLLRORO O,
CEORCLLOOOELOOEEOR Q00RO OOOHOHOOOO
COREOLOOODOOOEO DOCOOOOBOOOOLOY
QOOROODOOOOOBOO ® QeOOOHBHBOOOOOLBEO
DD OROOO Q 20000000V DOQ
D000QRCOOQOCO0O0OO Q0000 ODOOOERE
Q00Q0QCQOO00QCO0LOO <] OQO000O00DOOQEY
OO0 BORODOL ® QO0O0RCOLOOB O
DOOOOOBEOOE ® OO0V
DOHBOOBOOOOO OOOOHBLEOOBOSO
feNclzRelcNsNoNsNeRoNe) OOORHOOOOO
DOOOO0OLHEOOLOO @ DO00OLOOOOOOO
DO000COHOO00O0O0OQO Q Q0000 QOO00O00OGC
HDOoOOEOOOOOOOE CRLOHOOHOOOOE
00O OBBOE <l] QOOOHHBOBEEOO
QOROOLOHOLDOOORO QO0COLOHBHBOOLOBER
CORLOROOOORORLDOEO DOOOOEBOHOEOHOBLBE
Q0000 QODOODLORLLOLELOLOLLOOOOROODLOOL
DOQCOO0COVELDOOLOOOOOLOOLEOOOODOOOOLO
N=R:NoNo NN N RoNsNaNcNaeNeNaNoNoR: NN e -Nel=R:NoNclcNoNc R RoR sl
CO00EOORAETNHONOLHELRLREOLLOOOORLO G-
O000OLOLOOOOBLOLLOLRLOOOOOOOOOOY
00OV EOBLELRLOEOOOOOOLE
CO0OLOOOODOOLOLRROLLROOLOOLY
00000000 DOOLAOQROOOBOO
@@@@@@@@@@G@@@@@
DO0OOLOOHHOLBOBE
OO0 6.

U.S. Patent Sep. 27, 2016 Sheet 29 of 43 US 9,456,053 B2

REGION 3

\— REGION 4
e REGION 5

‘/— REGION 2
Oy

O

O

50 000 00 OO@ ©
- O
3 o X
& o /,Oo OOOOO 'OOOOOQ A OOO Oo
O\\/OQf P OO L 0,7)
L, o N P \QOOOO OQOO /! Oo / O
~0/ O g’ oY\ S 00k
YO 0 SoN e OQ} QO LT
o «"\Q\”'oo < e o -7
‘;’J TN <] - -
o AR ¢ g
=g EoZ ® 2
£ % eee é =] 3
3 b5 < 9 m
3 7 S, O -
: ™ = 3
oy g -
o o 5
Q é 8 w 4 N g
& =255 ¢ g
2833 8 -~
B &) s
(EGNEN E T

U.S. Patent Sep. 27, 2016 Sheet 30 of 43 US 9,456,053 B2

,,, g
Z
o] 5
>_)— 0
¥ 2 £
g 2 2z @
= o 9 =
o vl [«)
Q.,: i '=
g 005 3 ODj Z
= = |)—_IO N
i O N C Zz 0O O
F(DmmtmemcrO =
w oL o k& I o £ B <« —
<Oz Z 00 = Z Z = &
‘HI 5 © © &« E 0 0« g
O ¥ O o 0O O 00 2
2
. c
J<9X{ 0o e :
£
8
Ly {‘ ot
B
II- PCOOO0OOROBO 5
0000000000 RO0O0 OV =
DOEOONOOROROOROROO® =
DODE00NOROREOONORRE0 & 2
000ROEORCOOONOCROORO0Y n
000O0RONOOCCO0000OR000OQ0 ~
s RN RN RN ReRoRoRRoRoR Nl cRs RoReReRe N R Re)
COODEOOECO00ONO00OOOOOB T
HO0EROONROREORNORORORODOO
CO00OO0OOOCO00ROO0QROOO000
D0ORO0HNCO00000NROROORODOO
&) QOO0 OD ©POe X
@ @ leHalols]
o @ Sto
@ i 2 LQ © ©7C
@ # O. ".e‘
o ’V © ¢ o O
2+0 [
® £ OO0 €70
Mﬁ odo00
0000000
4 00000000000
0000000 QOO0OE
DOBOOOOOBO0OE@
DOOOOOOROOOO
000000000 D0000 X
PONORECOOOODODOO.
POOOOROREOOREREe
0OOOO0CDOOOORD
20000000000 QROQ
OOBOO0DOREOOOO
POOOOOOOOOOO
PO ROOO

DOOOOOHO OO,
000000000 I
MOOOOO O

o 0o o
cooecodobd

w =

US 9,456,053 B2

Sheet 31 of 43

Sep. 27, 2016

U.S. Patent

g0t

FHOD T0HINOD

31 "bi1d

"paasasas sybu iy "3 ‘sucHBdIINUILNY ¢ 18AsT L LOZ (9)

O OO
OO

A
Y)

&
o

NOLLNGRLSIQ TOYINOD ssocomccodiize-

IHOVD)

TOHINOD

N ELER]

O
o

LA 00000

Q0O CFOODO0O00O

Ty

0000000000
Q00000000 Q0P

U.S. Patent Sep. 27, 2016 Sheet 32 of 43 US 9,456,053 B2

LEGEND

e
DGO O
IDDOOO
o> 6 6 6
OO0

CONTROL
CACHE

ORIGIN
- CONTENT DELIVERY

O
O
@

(c) 2011 Level 3 Communications, LLC. All rights reserved.
Fig. 21F
ig.

GOOQO
O Gel3 D ¢ LY
o ooosbode

COOO000000

DODOOOOODO OO\

O00000000000
OO0000O000 gD
O0D00O0D0DOP
aJaleNoRoNeRoloRaln u
OO0000D0000

~

US 9,456,053 B2

Sheet 33 of 43

Sep. 27, 2016

U.S. Patent

"paAtesal SIUBH [y "D 'SUCHEJIUNWILOD ¢ [8A8T L 10T (9)

NOILOTTIOD VLV(] oo
IHOVD
TOYLINOD

O

O
SNOAZIANTY M\\.W

\V4

HOLO310D

GNZ93T

9Le "big

000

GOoO0OCOO0O00

GO0

g Y 4 S NRRRR <n~wn — a
& Vv SNOAZIANTY
901 &
¥0103T109 ¥

801 m
IO TOULNOD

poe-La

S

US 9,456,053 B2

Sheet 34 of 43

Sep. 27, 2016

U.S. Patent

Olddvd i DAN

901
HOLOITIOD

NOLLYY3dO
aniawod — Y

4A TAS A4

‘paatasas SWBH Iy "D SSUCHBOILNWILIOD ¢ [BAaT 1107 (3)

Old4vd] NAD —-—FN Im.—.m

HIAMAS NIDIHQ

Old4vey
TOHLNOD

80}
30D T0HINOD 1)
,

311 NOIDIY

ANTFHYS 3l MOVYH

|
{
|
|
|
{
{
“ AdYIWINd

ANFIVd

\»Q(Q_EOUMW g

i A3} AFLSOTD
!
!
!
!

H3il 3943

ZIV LY OV €OY ZOv LoV 0OV /E
3JAON

US 9,456,053 B2

Sheet 35 of 43

Sep. 27, 2016

U.S. Patent

~
.
H
h
H
s
.

it
WZLSAS SNG

B Tt LT LT ST

1

oiee
(LNINOINOD

NQD ¥3HLO

¢S Lt HO FHOD TOHINGD

IS 1 wowoio31100
| ¥O FHOVO) INTTD

SNOAZAANITY

YOl

007 (NQD) XHOMIIN AYIANIJ INFINOD

_
eys
«

[¥4

S (LINaNOQWOD NGO HIHLO

y§ HO FHOD TOHLNOD HO HOLOITIO0
¥O IHOVD) ¥INATSG-0D

US 9,456,053 B2

Sheet 36 of 43

Sep. 27, 2016

U.S. Patent

€z "bid

piee
SEVAELRERSER

ciee
(S)3DVHHILNI

MHOMLIN

0cee

SWYYO0Nd

0ied
JOVHOLS

0 AJOW3IN

..

7/

97107

— 90¢€c

— (8)40ss3004d

¢0¢¢ JILNdNOD

US 9,456,053 B2

Sheet 37 of 43

Sep. 27, 2016

U.S. Patent

.M.Zm>m%
TYNYIALNT

vie b1

eleq i9sM

|

1
— J(zuoﬁ NSV |
h /,
£4
¢3 > SINIAT
14
S

U.S. Patent Sep. 27, 2016 Sheet 38 of 43 US 9,456,053 B2

Fig. 24B

—WAITING

KBTASKS
vid:2
T6

5 S e
sse o]
i 2 =
N
T 2
>
N
-« & ~ 3 N
*0e o
Y (u S =
o™
= "
o~ - > o~
m -; P_— -6
=

RUNNING
T4
TASK—Z/

VCORE 2

US 9,456,053 B2

Sheet 39 of 43

Sep. 27, 2016

U.S. Patent

ope "bid

YNNIV
ONN4
\4 S SOVd ORdd
LNNOON a3an3ano
Y=Y B s

{(GIHD) 007G 04N} TINNVHD / DIVM

vl

avaH

HNIT

(QIA) Q1 3HO0A

(QIL) g »svL

FANLOMNELS MSVY |

>S31Ag 8T

US 9,456,053 B2

Sheet 40 of 43

Sep. 27, 2016

U.S. Patent

ave "bid

{sysvL ¥3SN NIFIMLIF) FUNLONHLS INIAT

FOVdS HOLVHOG

(Q1D) QI TANNYHD (i) Qi »svl

V s3iAd $9

V s3airg v9

US 9,456,053 B2

Sheet 41 of 43

Sep. 27, 2016

U.S. Patent

.
m _vN m _ “ (STANNVHO AS GINNSSY) TUNLONYLS INIAT

3OYdS HOLYHOS

[glowv
[t lowv
[Olouv
BLACNE] TYALI
LNOINEL 3300d0
Ovi
AN
(QiD) QI MSVYL 1398V (QlL) QI MsSY] HOLVILIN)

V saiAg $9

V S3iAg 9

US 9,456,053 B2

Sheet 42 of 43

Sep. 27, 2016

U.S. Patent

MOVLS
IALLNOAXT

acz "bij

Zo TPuueyd

CO=PTO
TL=PT3
1uaAg

1D ToUuURYD

10=pPTo
TI=PT3
AUDAT

13 jser zesn

sTeqOoTD

Movig 0<

vse "bid

sTenoY y3Ts swexy ()b

sseappe uanisx shHarw 6

STeSoT Yy3Th swezg ()3

sSaIppe uInlex
sbae 7

STEe00T U3 IM
aurexy ()uteuw

sbze Hoxd pue aAue

U.S. Patent Sep. 27, 2016 Sheet 43 of 43 US 9,456,053 B2

~

~

ViD2

DST VID

~
Type

.| POINTER

SHARED QUEUES

ViD1

Vibo

Fig. 26

US 9,456,053 B2

1
CONTENT DELIVERY NETWORK

RELATED APPLICATIONS

This application is related to and claims priority from the
following co-owned and co-pending U.S. provisional patent
applications, the entire contents of each of which are fully
incorporated herein by reference for all purposes: (1) U.S.
Application No. 61/570,448, titled “Content Delivery Net-
work,” filed Dec. 14, 2011, and (2) U.S. Application No.
61/570,486, titled “Content Delivery Network,” filed Dec.
14, 2011.

The entire contents of each of the following co-owned
U.S. Patents and co-pending patent applications are fully
incorporated herein by reference for all purposes:

1. U.S. Pat. No. 7,822,871 titled “Configurable Adaptive

Global Traffic Control And Management,” filed Sep.
30, 2002, issued Oct. 26, 2010;

2. U.S. Pat. No. 7,860,964 titled “Policy-Based Content
Delivery Network Selection,” filed Oct. 26, 2007,
issued Dec. 28, 2010;

3. U.S. Pat. No. 6,185,598 titled “Optimized Network
Resource Location,” filed Feb. 10, 1998, issued Feb. 6,
2001,

4. U.S. Pat. No. 6,654,807 titled “Internet Content Deliv-
ery Network,” filed Dec. 6, 2001, issued Nov. 25, 2003;

5. U.S. Pat. No. 7,949,779 titled “Controlling Subscriber
Information Rates In A Content Delivery Network,”
filed Oct. 31, 2007, issued May 24, 2011;

6. U.S. Pat. No. 7,945,693 titled “Controlling Subscriber
Information Rates In A Content Delivery Network,”
filed Oct. 31, 2007, issued May 17, 2011;

7. U.S. Pat. No. 7,054,935 titled “Internet Content Deliv-
ery Network,” filed Mar. 13, 2002, issued May 30,
2006;

8. U.S. Published Patent Application No. 2009-0254661
titled “Handling Long-Tail Content In A Content Deliv-
ery Network (CDN),” filed Mar. 21, 2009;

9. U.S. Published Patent Application No. 2010-0332595
titled “Handling Long-Tail Content In A Content Deliv-
ery Network (CDN),” filed Sep. 13, 2010;

10. U.S. Pat. No. 8,015,298 titled “Load-Balancing Clus-
ter,” filed Feb. 23, 2009, issued Sep. 6, 2011; and

11. U.S. Published Patent Application No. 2010-0332664
titled “Load-Balancing Cluster,” filed Sep. 13/2010.

BACKGROUND OF THE INVENTION
Copyright Statement

This patent document contains material subject to copy-
right protection. The copyright owner has no objection to the
reproduction of this patent document or any related mate-
rials in the files of the United States Patent and Trademark
Office, but otherwise reserves all copyrights whatsoever.

FIELD OF THE INVENTION

This invention relates to content delivery and content
delivery networks. More specifically, to content delivery
networks and systems, frameworks, devices and methods
supporting content delivery and content delivery networks.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions

10

15

20

25

30

35

40

45

50

55

60

65

2

of the related elements of structure, and the combination of
parts and economies of manufacture, will become more
apparent upon consideration of the following description
and the appended claims with reference to the accompany-
ing drawings, all of which form a part of this specification.

FIG. 1. shows exemplary content delivery network
(CDN);

FIGS. 2 and 3 depict cache cluster sites in a CDN;

FIGS. 4 and 5 depict cache clusters in the cache cluster
sites of FIGS. 2 and 3;

FIG. 6 depicts an exemplary cache cluster site;

FIG. 7 depicts a control core cluster of a CDN;

FIGS. 8 and 9 depict the hierarchical organization of a
content delivery network and the logical organization of
caches in a CDN;

FIG. 10 shows a typical interaction between a client and
a CDN;

FIG. 11 shows request-response processing in a CDN;

FIGS. 12A-12C show various data structures;

FIG. 13A is a logical depiction of a sequence control
object;

FIGS. 13B-13D show examples of sequences and
sequence processing;

FIG. 14A-14D show examples of sequencers and han-
dlers;

FIG. 15A is a flow chart showing a process of adding a
cache server to a CDN;

FIG. 15B is a flow chart showing exemplary request-
response processing in a CDN;

FIG. 15C shows operation of various caches in a CDN;

FIG. 16 shows an exemplary cache server operating
within a CDN;

FIG. 17 is a block diagram showing the major functional
modules for request-response processing in an exemplary
cache server;

FIGS. 18 and 19 depict various tables and databases used
by the CDN;

FIGS. 20A-20C is a flow chart describing an exemplary
request-response processing flow;

FIGS. 21A-21H show an exemplary CDN and aspects of
its operation;

FIG. 22 show interaction between components of the
CDN; and

FIG. 23 shows a typical computer system; and

FIGS. 24A to 24E, and 25A to 25B and 26 describe
aspects of the Executive system.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMPLARY
EMBODIMENTS

Glossary
As used herein, unless used otherwise, the following
terms or abbreviations have the following meanings:
CCS means Customer Configuration Script
CDN means Content Delivery Network;
CNAME means Canonical Name;
DNS means Domain Name System;
FQDN means Fully Qualified Domain Name;
FTP means File Transfer Protocol;
GCO means Global Configuration Object;
HTTP means Hyper Text Transfer Protocol;
HTTPS means HTTP Secure;
IP means Internet Protocol;
IPv4 means Internet Protocol Version 4;
IPv6 means Internet Protocol Version 6;

US 9,456,053 B2

3

IP address means an address used in the Internet Protocol,
including both IPv4 and IPv6, to identify electronic devices
such as servers and the like;

MX means Mail Exchange;

NDC means Network Data Collector;

NS means Name Server;

QoS means quality of service;

TCP means Transmission Control Protocol;

URI means Uniform Resource Identifier;

URL means Uniform Resource Locator; and

VIP address means a virtual IP address.

Background and Overview

The primary purpose of a content delivery network—a
CDN—is to distribute resources -efficiently to client
machines on behalf of one or more content providers,
preferably via a public Internet. A CDN can also provide an
over-the-top transport mechanism for efficiently sending
content in the reverse direction—from the client to the origin
server. Both end-users (clients) and content providers benefit
from using a CDN. By using a CDN;, a content provider is
able to take pressure off its own servers. Clients benefit by
being able to obtain content with fewer delays.

Overview—Structure

FIG. 1 shows an exemplary CDN 100, which includes
multiple caches 102-1, 102-2 . . . 102-m (collectively caches
102, individually cache 102-i), rendezvous mechanisms/
systems 104-1 . . . 104-%, (collectively rendezvous mecha-
nism(s)/system(s) 104, made up of one or more rendezvous
mechanisms 104-f), collector mechanism/system 106 (made
up of one or more collector mechanisms 106-1 . . . 106-»),
and a control core 108. The CDN 100 also includes various
operational and/or administrative mechanisms 109.

As shown in FIG. 2, each CDN cache 102 may be a cache
cluster site 202 comprising one or more cache clusters 204.
The cache cluster site 202 may include a routing mechanism
206 acting, inter alia, to provide data to/from the cache
clusters 202. The routing mechanism 206 may perform
various functions such as, e.g., load balancing, or it may just
pass data to/from the cache cluster(s) 204. Depending on its
configuration, the routing mechanism 206 may pass incom-
ing data to more than one cache cluster 204. FIG. 3 shows
an exemplary cache cluster site 202 with p cache clusters
(denoted 204-1, 204-2 . . . 204-p).

As shown in FIG. 4, a cache cluster 204 comprises one or
more servers 208. The cache cluster preferably includes a
routing mechanism 210, e.g., a switch, acting, inter alia, to
provide data to/from the servers 208. The servers 208 in any
particular cache cluster 204 may include caching servers 212
and/or streaming servers 214. The routing mechanism 210
provides data (preferably packet data) to the server(s) 208.
Preferably the routing mechanism 210 is an Ethernet switch.

The routing mechanism 210 may perform various func-
tions such as, e.g., load balancing, or it may just pass data
to/from the server(s) 208. Depending on its configuration,
the routing mechanism 210 may pass incoming data to more
than one server 208. FIG. 5 shows an exemplary cache
cluster 204' comprising k servers (denoted 208-1, 208-2 . .
. 208-%) and a switch 210'.

The cache cluster site routing mechanism 206 may be
integrated with and/or co-located with the cache cluster
routing mechanism 210.

FIG. 6 shows an exemplary cache cluster site 202" with
a single cache cluster 204" comprising one or more servers
208". The server(s) 208" may be caching servers 212" and/or
streaming servers 214". As shown in the example in FIG. 6,
the cache cluster routing mechanism 210" and the cache
cluster site’s routing mechanism 206" are logically/func-

10

15

20

25

35

40

45

55

60

65

4

tionally (and possibly physically) combined into a single
mechanism (as shown by the dotted line in the drawing).

A cache server site may be a load-balancing cluster, e.g.,
as described in U.S. published Patent Application No. 2010-
0332664, filed Feb. 28, 2009, titled “Load-Balancing Clus-
ter,” and U.S. Pat. No. 8,015,298, titled “Load-Balancing
Cluster,” filed Feb. 23, 2009, issued Sep. 6, 2011, the entire
contents of each of which are fully incorporated herein by
reference for all purposes.

In presently preferred implementations, some of the cache
cluster servers 208 that are connected to a particular switch
210 will share the same virtual IP (VIP) addresses. (Each
cache cluster server 208 will also preferably have a different
and unique IP address.) In these presently preferred imple-
mentations, for the purposes of CDN control, the cache
cluster routing mechanism 210 and the cache cluster site’s
routing mechanism 206 are logically/functionally (and pref-
erably physically) combined into a single mechanism—a
switch. In these implementations the cache cluster site refers
to all of the machines that are connected to (e.g., plugged in
to) the switch. Within that cache cluster site, a cache cluster
consists of all machines that share the same set of VIPs.

An exemplary cache cluster 204 is described in U.S.
published Patent Application No. 2010-0332664, titled
“Load-Balancing Cluster,” filed Sep. 13, 2010, and U.S. Pat.
No. 8,015,298, titled “Load-Balancing Cluster,” filed Feb.
23, 2009, issued Sep. 6, 2011, the entire contents of each of
which are fully incorporated herein for all purposes.

With reference again to FIG. 1, as explained in greater
detail below, the rendezvous system 104 is used to direct
client resource requests. The rendezvous system 104 is
preferably implemented using the DNS and comprises one
or more DNS name servers. The rendezvous mechanisms
1044 are preferably domain name servers implementing
policy-based domain name resolution. An exemplary ren-
dezvous system 104 is described in U.S. Pat. No. 7,822,871,
titled “Configurable Adaptive Global Traffic Control And
Management,” filed Sep. 30, 2002, issued Oct. 26, 2010, and
U.S. Pat. No. 7,860,964 “Policy-Based Content Delivery
Network Selection,” filed Oct. 26, 2007, issued Dec. 28,
2010, the entire contents of each of which are fully incor-
porated herein for all purposes.

The control core mechanism 108 controls operation of the
CDN and is described in greater detail below. Physically, the
control core preferably consists of a set of geographically
distributed machines, preferably connected via high-speed
communication links. E.g., five machines located in New
York, San Francisco, Chicago, L.ondon, and Frankfurt. Logi-
cally, the control core acts like a single, robust data base/web
server combination, containing configuration data.

FIG. 7 shows an exemplary control core mechanism 108
made up of five distinct components or machines (denoted
CC1, CC2, CC3, CC4, CCS5 in the drawing). While shown
with five components or machines, those of skill in the art
will realize and understand, upon reading this description,
that the control core could be formed of any number of
components or machines comprising the control core. Odd
numbers are preferable because of the use of voting by the
components or machines Larger numbers will make the
control core more available but respond slower. Having only
one machine is a degenerate case possibly useful in non-
production situations. The components or machines forming
the control core are operated together as a single high-
availability cluster, and are shown as a single entity in most
drawings. It should be understood that any particular inter-
action with the control core mechanism 108 will likely take
place with only one of its component machines. The control

US 9,456,053 B2

5

core mechanism 108 is also referred to herein as the control
core cluster 108 or the control core 108.

Although only one control core 108 is shown in FIG. 1,
it should be appreciated that a CDN may have more than one
control core, with different control cores controlling differ-
ent aspects or parts of the CDN.

The control core 108 is addressable by one or more
domain names. For the sake of this description, the domain
name control.fp.net will be used for the control core 108. In
a preferred implementation the control core cluster consists
of five (5) distinct and geographically distributed control
core mechanisms and is operated as a multihomed location
with five (5) IP addresses. Thus, when a client asks a DNS
server to resolve the control core’s domain name (e.g.,
control.fp.net) the DNS server will return one or more of the
five IP addresses associated with that name. That client may
then access the control core at one of those addresses. It
should be appreciated that the DNS server(s) will provide
the client with a rendezvous to a “nearby” control core
server or servers (i.e., to “best” or “optimal” control core
server(s) for that client), similar to the manner in which
clients rendezvous with CDN servers. In other words, inter-
nal components of the CDN (cache servers, control cores,
etc.) may use the same rendezvous mechanisms as are used
by entities outside the CDN to rendezvous with CDN
components. In some cases the various control core mecha-
nisms may have the same IP address, in which cases routing
tables may direct a client to a “best” or “optimal” control
core mechanism. This may also be achieved using an
anycast IP address.

Tiers and Groups

A CDN may have one or more tiers of caches, organized
hierarchically. FIG. 8 depicts a content delivery network 100
that includes multiple tiers of caches. Specifically, the CDN
100 of FIG. 8 shows j tiers of caches (denoted Tier 1, Tier
2, Tier 3, . . . Tier j in the drawing). Each tier of caches may
comprise a number of caches organized into cache groups.
A cache group may correspond to a cache cluster site or a
cache cluster (202, 204 in FIGS. 2-5). The Tier 1 caches are
also referred to as edge caches, and Tier 1 is sometimes also
referred to as the “edge” or the “edge of the CDN.” The Tier
2 caches (when present in a CDN) are also referred to as
parent caches.

For example, in the CDN 100 of FIG. 8, Tier 1 has n
groups of caches (denoted “Edge Cache Group 17, “Edge
Cache Group 27, . . . “Edge Cache Group n”); tier 2 (the
parent caches’ tier) has m cache groups (the i-th group being
denoted “Parent Caches Group i”); and tier 3 has k cache
groups, and so on. Preferably each tier has the same number
of cache groups, although this is not required.

FIG. 9 shows the logical organization/grouping of caches
in a CDN of FIG. 8. In the exemplary CDN 100 of FIG. 9,
each tier of caches has the same number (n) of cache groups.
Those of skill in the art will know and understand, upon
reading this description, that each cache group may have the
same or a different number of caches. Additionally, the
number of caches in a cache group may vary dynamically.
For example, additional caches may be added to a cache
group to deal with increased load on the group.

The caches in a cache group may be homogeneous or
heterogeneous, and each cache in a cache group may com-
prise a cluster of physical caches sharing the same name
and/or network address. An example of such a cache is
described in co-pending and co-owned U.S. published Pat-
ent Application No. 2010-0332664, titled “L.oad-Balancing
Cluster,” filed Sep. 13, 2010, and U.S. Pat. No. 8,015,298,
titled “Load-Balancing Cluster,” filed Feb. 23, 2009, issued

10

15

20

25

30

35

40

45

50

55

60

65

6

Sep. 6, 2001, the entire contents of which are fully incor-
porated herein by reference for all purposes.

Caches in the same tier and the same group may be
referred to as peers or peer caches. In general, for each Tier
j, the caches in Tier j may be peers of each other, and the
caches in Tier j+1 may be referred to as parent caches. In
some cases, caches in different groups and/or different tiers
may also be considered peer caches. It should be appreciated
that the notion of peers is flexible and that multiple peering
arrangements are possible and contemplated herein.

Atypical CDN has only one or two tiers of caches. ACDN
with only one tier will have only edge caches, whereas a
CDN with two tiers will have edge caches and parent caches.
(At a minimum, a CDN should have at least one tier of
caches—the edge caches.)

The grouping of caches in a tier may be based, e.g., on one
or more of their physical or geographical location, network
proximity, the type of content being served, the character-
istics of the machines within the group, etc. For example, a
particular CDN may have six groups—four groups of caches
in the United States, group 1 for the West Coast, group 2 for
the mid-west, Group 3 for the northeast and Group 4 for the
south east; and one group each for Europe and Asia.

Those of skill in the art will realize and understand, upon
reading this description, that cache groups may correspond
to cache clusters or cache cluster sites.

A particular CDN cache is preferably in only one cache
group.

In general, some or all of the caches in each tier can
exchange data with some or all of the caches in each other
tier. Thus, some or all of the parent caches can exchange
information with some or all of the edge caches, and so on.
For the sake of simplicity, in the drawing (FIG. 8), each tier
of caches is shown as being operationally connectable to
each tier above and below it, and Tier 3 is shown as
operationally connected to Tier 1 (the Edge Tier). In some
CDNs, however, it may be preferable that the caches in a
particular tier can only exchange information with other
caches in the same group (i.e., with peer caches) and/or with
other caches in the same group in a different tier. For
example, in some CDNs, the edge caches in edge cache
group k, can exchange information with each other and with
all caches in parent cache group k, and so on.

A content provider’s/customer’s server (or servers) are
also referred to as origin servers. A content provider’s origin
servers may be owned and/or operated by that content
provider or they may be servers provided and/or operated by
athird party such as a hosting provider. The hosting provider
for a particular content provider may also provide CDN
services to that content provider. With respect to a particular
subscriber/customer resource, a subscriber/customer origin
server is the authoritative source of the particular resource.
More generally, in some embodiments, with respect to any
particular resource (including those from elements/machines
within the CDN), the authoritative source of that particular
resource is sometimes referred to as a co-server.

A CDN may also include a CDN origin/content cache tier
which may be used to cache content from the CDN’s
subscribers (i.e., from the CDN subscribers’ respective
origin servers). Those of skill in the art will know and
understand, upon reading this description, that a CDN can
support one or more content providers or subscribers, i.e.,
that a CDN can function as a shared infrastructure support-
ing numerous content providers or subscribers. The CDN
origin tier may also consist of a number of caches, and these
caches may also be organized (physically and logically) into
a number of regions and/or groups. The cache(s) in the CDN

US 9,456,053 B2

7

origin tier obtain content from the content providers’/sub-
scribers’ origin servers, either on an as needed basis or in
advance or an explicit pre-fill.

Overview—Operation

FIG. 10 shows a typical interaction between a client 110
and a CDN 100. In this case the CDN 100 serves content
(resources) on behalf of the content provider 112. As
described above, the CDN includes multiple locations (e.g.,
cache sites not shown in the drawing) from which content
may be provided/served to clients. The process of associat-
ing a particular client (or client request) with a particular
location in the CDN is referred to as a rendezvous process.
When a particular client (e.g., client 110) wants to obtain
some content (e.g., a particular resource), that client is
typically directed to a “best” (or “optimal™) location (via
some rendezvous mechanism 104). As used here, a location
may be, e.g., a server, a server site, a region of servers, a
cache cluster, a cache cluster site, etc. The location may even
be another CDN or network or a server outside the CDN
100. With reference to FIGS. 1-7, the “best” or “optimal”
location may be, without limitation, a cache cluster site, a
cache cluster, a group, a tier, or some combination thereof.

Those of skill in the art will realize and understand, upon
reading this description, that the notion of a “best” or
“optimal” location is dependent on multiple factors, includ-
ing, without limitation, some or all of the following: network
load, load on the CDN servers and other components,
location of the client computer, etc. The notion of a “best”
or “optimal” location may vary by time of day, type of
content, content provider policies, CDN policies, etc. The
invention is not to be limited in any way by the manner in
which a “best” or “optimal” location in the CDN is deter-
mined.

A “best” or “optimal” server may be selected by a server
selection mechanism such as described in U.S. Pat. Nos.
6,185,598, 6,654,807, 7,949,779; 7,945,693; and 7,054,935,
the entire contents of each of which are fully incorporated
herein for all purposes. In a presently preferred implemen-
tation, the server selection mechanism is part of and/or uses
the DNS system.

In a presently preferred implementation, the rendezvous
system 104 uses and is integrated into the DNS system, as
described in U.S. Pat. No. 7,822,871, filed Sep. 30, 2002,
issued Oct. 26, 2010, and U.S. Pat. No. 7,860,964, filed Oct.
26, 2007, issued Dec. 28, 2010, the entire contents of each
of which are fully incorporated herein for all purposes. The
client 110°’s DNS system 114 interacts with the CDN’s
rendezvous mechanism 104 in order to associate a particular
client request for a resource with a particular location,
preferably in the CDN 100, from which that requested
resource will be served to the client. The “best” or “optimal”
location may be provided by the rendezvous mechanism 104
as one or more IP addresses or a CNAME (domain name)
corresponding to one or more locations in the CDN or to a
different CDN or network.

With reference to FIG. 10, an exemplary use of the CDN
100 (in which the client 110 wants to obtain a particular
resource) is as follows:

The client computer 110 interacts with the rendezvous
mechanism 104 in order to determine the “best” location
from which to obtain the particular resource (at S1). When
the rendezvous mechanism 104 is integrated into the DNS
system, the client’s DNS system 114 interacts with the
CDN’s rendezvous mechanism 104 to direct the client to a
location, preferably in the CDN 100, from which the client
can obtain (or try to obtain) the resource. When the rendez-
vous mechanism 104 is integrated into the DNS system, this

25

30

40

45

55

8

request (at S1) may be part of a request to resolve a domain
name associated with the particular resource, and the ren-
dezvous mechanism may provide the client with one or more
IP addresses or CNAME of one or more locations in the
CDN (at S2). If the rendezvous mechanism provides more
than one IP address (corresponding to more than one “best”
location), the client may select which of those addresses to
use.

Having obtained a “best” location from which to obtain
the particular resource, the client computer 110 then requests
the particular resource from the location in the CDN 100 (at
S3a). The CDN 100 may already have a copy of that
particular resource at that location, in which case it provides
(serves) the resource to the client computer 110 (at S35). If
the CDN did not already have a copy of that particular
resource at that location, then it tries to obtain a copy at that
location (either from another location in the CDN or from
the content provider 112 (at Sda, S4b)). Having obtained the
resource (either from another location in the CDN or from
a the content provider 112), the CDN 100 provides (serves)
the resource to the client computer 110 (at S35). It should be
appreciated that in some cases the response could be gen-
erated within the CDN as opposed to fetched. This may
occur, e.g., in the case of a conversion from an existing
resource (such as a compression/transcoding) or completely
generated by a script/process (either previously pulled from
the content providers origin server, or provided from the
control core as part of the property configuration.

The CDN may also provide information (e.g., logs and
performance data) to content providers regarding resources
delivered on their behalf. Thus, as shown in FIG. 10, the
CDN 100 may provide information to the content provider
112 (at S5).

To simplify the above explanation, FIG. 10 shows only
one client computer 110, one content provider 110 and one
CDN 100. Those of skill in the art will realize and under-
stand, upon reading this description, that a typical CDN may
provide content on behalf of multiple content providers to
multiple client computers. Those of skill in the art will also
realize and understand, upon reading this description, that
the system may include multiple CDNs, and that the ren-
dezvous mechanism 104 may cause client requests to be
directed to different ones of the CDNs. An exemplary
rendezvous mechanism 104 is described, e.g., in U.S. Pat.
Nos. 7,822,871 and 7,860,964, the entire contents of each of
which are fully incorporated herein by reference for all
purposes.

As used herein, the terms “resource” and “content” refer,
without any limitations, to any and all kinds of resources
and/or content that may be provided to client computers via
CDNs. Resources and/or content may be any static or
dynamic data item comprising an arbitrary sequence of bits,
regardless of how those bits are stored or transmitted, and
regardless of what those bits represent. A resource provided
by a CDN may comprise data representing some or all of
another resource, including some or all of: a file, a portion
of a file, a digital message, a portion of a digital message, a
digital image, a portion of a digital image, a video signal, a
portion of a video signal, an audio signal, a portion of an
audio signal, a software product, a portion of a software
product, a page in memory, a web page; a movie, and a
portion of a movie. This list is given by way of example, and
is not intended to be in any way limiting.

FIG. 10 shows the client 110 as separate from the CDN.
As will be explained in detail below, the inventors realized
that the various components of the CDN could themselves
act as clients with respect to the CDN in order to obtain CDN

US 9,456,053 B2

9

related resources. Therefore the client may be a CDN
element or component, e.g., a cache. Similarly, FIG. 10
shows the content provider 112 as separate from the CDN.
As will be explained in detail below, the inventors realized
that the various components of the CDN could themselves
act as content providers with respect to the CDN in order to
provide CDN related resources to other CDN components.
Thus, e.g., as will be explained further below, with reference
to FIG. 1, when a collector mechanism 106 obtains infor-
mation from a cache 102, that collector mechanism 106 is
acting as a client, while the cache 102 is a content provider.

The CDN has been described thus far in terms of its
separate and distinct components. It should be understood,
however, that within the CDN each object (e.g., all data that
is to be moved between CDN components) is treated as a
web object or resource, with, e.g. the control core acting as
the “origin tier” for such objects. That is, each CDN object
has a URL (or whatever address is used by the CDN), and
each CDN object can be requested, filled, invalidated,
refreshed, etc. Each cache has the knowledge (information)
it needs to obtain and provide CDN objects. This approach
allows all data transfers within the CDN to use the CDN
itself. The CDN can thus use its own mechanisms to deal
with CDN control and/or management-related information
(e.g., control core data). Thus, e.g., any CDN component can
obtain CDN data using the CDN.

Request—Response Processing

In operation, the various CDN components (e.g., caches)
receive requests for resources, processes those requests, and
provide responses (which may include, e.g., the requested
resources, error messages, or directions to find the resources
elsewhere).

FIG. 11 shows the request-response operation of an exem-
plary CDN component 1102. Although component 1102 is
denoted “Server” in the drawing, it should be appreciated
that component 1102 may be a cache server or any other
component of the CDN that performs request-response
processing. As shown in the drawing, client 1103 makes a
request for a resource of server 1102, and receives a
response to that request. In processing that request, as
explained below, the server 1102 may obtain information
from one or more other data sources 1110. Some of these
data sources 1110 may be other CDN components (e.g.,
caches 1112 or control core(s) 1116). The data sources 1110
may also include origin server(s) 1114 that may or may not
be part of the CDN. It should be appreciated that the client
1103 may be another CDN component (e.g., a cache) or it
may be a client entity that is external to the CDN.

The server 1102 preferably supports HTTP/1.0, and
HTTP/1.1, and HTTPS requests, although it is not limited to
those protocols or to any particular version of any protocol.
HTTP/1.1 is defined in Network Working Group, Request
for Comments: 2616, June 1999, “Hypertext Transfer Pro-
tocol—HTTP/1.1,” the entire contents of which are fully
incorporated herein by reference for all purposes. HTTPS is
described in Network Working Group, Request for Com-
ments: 2818, May 2000, “HTTP Over TLS,” the entire
contents of each of which are fully incorporated herein by
reference for all purposes. Unless specifically stated other-
wise, “HTTP” is used in this description to refer to any
version or form of HTTP request, including HTTP and
HTTPS requests. Those of skill in the art will realize and
understand, upon reading this description, that HITPS may
be preferred in situations where additional security may be
required.

It should also be appreciated that when an HTTP request
is referred to herein, some other protocols, including possi-

10

15

20

25

30

35

40

45

50

55

60

65

10

bly proprietary protocols, may be used while still leveraging
the CDN and using URLs to name the objects.

The server 1102 includes a request/response mechanism
1104 (preferably implemented by software in combination
with hardware on the server 1102). The request/response
mechanism 1104 listens for requests on multiple configured
addresses/ports, including port 1106.

When a request is made, the request/response mechanism
1104 tries to identify a customer associated with that request.
As used here, a “customer” is an entity that is authorized to
have its content served by the server 1102. The customer
may be an external entity such as, e.g., a subscriber to the
CDN, or the customer may be another CDN component. In
order to determine whether or not the request is associated
with a customer of the CDN (or the CDN itself), the server
1102 needs at least some information about the CDN’s
customers. This information may be stored as global data
1108 in a database 1106 on the server 1102. The global data
1108 should include sufficient data to allow the server 1102
to either reject the request (in the case of a request for a
resource that is not associated with a customer), or to serve
the requested resource to the client 1103, or to direct the
client to another source from which the requested resource
can be served. If the server 1102 does not have the required
global data 1108 at the time of the client request, it may
obtain the needed global data 1108 from a data source 1110,
preferably from a control core 1116 or from another cache.
In effect, for internal CDN data, the control core is consid-
ered an origin server or coserver.

As explained below, the request/response mechanism
1104 may perform customer-specific processing as part of
the request/response processing. In order to perform cus-
tomer-specific processing, the request/response mechanism
needs certain customer-specific data 1110. If current cus-
tomer-specific data 1110 are not available in the request/
response mechanism’s database 1106, the server 1102 may
obtain the needed customer-specific data from a data source
1110, preferably from a control core 1116 (although cus-
tomer-specific data may also be obtained from another cache
1112 in the CDN).

Objects, Sequencers and Handlers

The processing performed by request/response mecha-
nism 1104 uses various kinds of objects, including a Notes
Object, a Session Object (sxn), and a Transaction Object
(txn). With reference to FIG. 12A, a Notes Object 1204 is a
generalized string key/value table. FIGS. 12B-12C show a
Session Object (sxn 1206) and a Transaction Object (txn
1208), respectively. A session object 1206 contains infor-
mation about a particular client session, e.g., a client con-
nection or an internally launched (or spawned) session. A
Session Object 1206 may contain allocation context infor-
mation for a session. A Transaction Object (txn 1208) is
usually associated with a session and contains information
about an individual request. During a session, multiple
transactions may be performed, and information about each
transaction is carried in a transaction object. E.g., a trans-
action object carries the request to be satisfied, room for the
response, information about where the response body is
coming from (e.g., response channel id), etc.

A sequencer is essentially a task. A sequencer uses a
sequence control object made up of an ordered list of one or
more handlers and handler argument(s). FIG. 13A shows an
exemplary sequence control object 1301 comprising
handler(s) 1302 and handler argument(s) 1304. The
handler(s) 1302 comprise the ordered lists of handlers
1302-1, 1302-2 . . . 1302-z. It should be appreciated that not
all handlers require arguments, and that some handlers may

US 9,456,053 B2

11

obtain some or all of their arguments from other locations.
It should also be appreciated that a sequence control object
may have only a single handler and/or no arguments.

When running, a sequencer invokes its handlers (essen-
tially, processing modules) in order. By default, sequencers
are bidirectional, so that the sequencer’s handlers are called
(invoked) in order on the way “in” and in reverse order on
the way “out”. Handlers can modify the sequence, thereby
providing flexibility. FIG. 13B shows the execution of the
sequence of handlers 1302 from sequence control object
1301 (of FIG. 13D). As shown in FIG. 13B, the sequencer
invokes the handlers in the order “Handler #1,” “Handler
#2,” . . . “Handler #n” into the sequence and then in the
reverse order out of the sequence. So “Handler #1” makes a
request of “Handler #2”, and so on, until “Handler #n”, and
then results are passed back, eventually from “Handler #2”
to “Handler #1”.

Handlers may be synchronous or blocking. Handlers may
inspect and modify the sequence to which they belong, and
handlers may launch their own sequencers. There are two
forms of this process: one is where a handler launches a
“subsequence”. That subsequence runs in the same
sequencer as the handler and the sequence the handler is in
is suspended until the subsequence is complete. Another
example is where a handler launches a complete sequencer.
In that case, the sequencer is a separate, independent task. A
powerful aspect of that model is that a handler could launch
such a sequence on the way in to the sequence, allow
processing to continue, and then pick up the result (waiting
if necessary) on the way out of the sequence. FIG. 13C
shows an example of a first sequence (“Sequence 1) in
which a handler (Handler #2, 1302-2) launches (or spawns)
another sequence (“Sequence 2”, consisting of Handler #2,1
1302-2.1 . . . Handler #2.k 1302-2.%). If Sequence 2 runs in
the same sequence as the handler #2, then handler #3 (of
sequence 1) will not begin until sequence 2 is complete (i.e.,
until handler #2,k is done). If, on the other hand, sequence
2 is launched as an independent and separate task, sequence
1 can continue with handler #3, etc. without waiting for
sequence 2 to complete.

FIG. 13D shows an example of a first sequence (“Se-
quence 1”) in which a handler (#2) launches two other
sequences (Sequence #2,1, and Sequence #2,2). The
Sequence #2,2 launches a subsequence #2,2.1.

A handler’s behavior may be classified into three broad
groups (or types):
One-shot: The handler is removed from sequence when
done.

Intelligent: The handler may manipulate sequence.

Persistent: The handler is called on the way “in” and
“out

33

These labels are used as descriptive shorthand for basic
types of handler behavior, and it should be appreciated that
this type is not used by the sequencer, and nothing needs to
enforce a handler’s “type,” and a handler may act differently

depending on circumstances.

Handlers may be named (e.g.: “ssl”, “http-conn”, “http-
session”, “strip-query”, “proxy-auth”, etc.) to correspond to
the functions that they are to perform.

A sequence control object may be stored in compiled form
for re-use, so there is no need to constantly look up handler
names.

10

15

25

30

35

45

50

55

60

65

12

The following is an example of a sequence specification
for an
HTTP listener:

listener = {
address = “*.80”,
sequence = “http-conn, http-session”

In this example, the handlers are “http-conn™ and “http-
session”, and the parameters are “address="*.0.80"". This
listener task provides a bare TCP or cleartext connection.
The first handler (“http-conn™) is a one-shot handler which
creates an HTTP connection from a cleartext connection.
The second handler (“http-session”) is an intelligent handler
that takes the HTTP connection (as already created by the
“http-conn” handler), creates a session object and handles
the entire session. It should be appreciated that the listener
is just providing the communication channel to the client,
and the same basic listener code could be used with different
handlers to implement protocols other than HTTP (e.g.,
FTP).

As another example, the following sequence specifies a
general SSL listener:

listener = {
address = “*.443”,
sequence = “ssl, http-conn, http-session”

In this example, the handlers are “ssI”, “http-conn” and
“http-session”, and the parameters are “address=‘*.443"".
This sequence is similar to the HTTP listener (above), except
that the SSL handler first creates an SSL channel on the bare
(encrypted) connection, suitable for the http-conn handler.
Although the SSL handler is a “one-shot” handler, it needs
to block since it must perform the SSL negotiation. That is,
the “ssl” handler must complete before the next handler can
begin. The SSL handler is responsible for instantiating an
SSL channel. It should be appreciated that although the ssl
channel is persistent, the handler which sets it up does not
need to be persistent. The “ssl” handler instantiates an SSL
channel on top of the cleartext channel Once that is
done, the SSL channel (which does the decryption and
encryption) persists until the connection is finished, even
though the “ssI” handler itself is gone from the sequence. So
the “ssI” handler is not performing the SSL operations itself,
it is just enabling them by instantiating the necessary chan-
nel.

FIGS. 14A-14D show examples of sequencers and han-
dlers.

As shown above, a sequence may be is used to interpret
a request and get to the point that a response is available to
be pumped. The same basic sequencing mechanism can be
used to implement a programmable pump/filter, although of
course the handlers themselves are now performing a dif-
ferent task. FIG. 14A shows a bidirectional sequence that is
part of a pump/filter. The pump task uses “direct delivery”
requests, e.g., sendfile(), because it does not need to see the
data itself. It should be appreciated that sendfile() is not the
request, it is just one way a direct delivery request may be
implemented by the channel involved. The delivery
sequence consists of two handlers:

delivery-monitor (account bytes, monitors performance);

and

chan-submit (submits request to a channel, waits for

response). The channel may be, e.g., an object channel,
downstream channel, etc.

US 9,456,053 B2

13

If the process requires, e.g., computation of an MDS5 of the
pumped data, the sequencer can be set up with an MD5
handler in the path (e.g., as shown in FIG. 14B). The MD5
handler can snoop the data as it passes.

An example of a self-modifying sequence is shown in
FIG. 14C. The pump task is using direct delivery requests,
so the data is not available in user space. The MDS5 handler
sees the request on the way “in” to the sequence and inserts
a new handler (“direct-to-buffered”) handler to the “left” of
the MDS5 handler so that it runs before the MDS5 handler. The
“direct-to-buffered” handler translates direct delivery to
buffered read/write.

A sequence can be modified to change direction of the
order of operations. For example, in a case where direct
delivery requests can be too large for a single buffered
read/write, the “direct-to-buffered” handler can change the
sequence direction to perform multiple operations on one
side of the sequence (e.g., as shown in FIG. 14D). Handlers
to the left of the “direct-to-buffered” handler still see what
they expect to see, while handlers to the right of the
“direct-to-buffered” handler perform multiple operations.

Scripts and Customer-Specific Control

As noted, the request/response mechanism 1104 (FI1G. 11)
may perform customer-specific processing as part of the
request/response processing. The request/response mecha-
nism needs certain customer-specific data 1110 in order to
perform the customer-specific processing.

The request/response mechanism 1104 may allow cus-
tomer-specific handlers (or sequences) to be included at
various locations (or hooks) during request/response pro-
cessing. These customer-specific handlers may perform
operations on the request and/or response paths. The cus-
tomer-specific scripts that are to be used to process a
customer’s requests are referred to as Customer Configura-
tion Scripts (CCSs), and are associated with the customers,
e.g., via customer ids. Preferably the system has a default
mode in which it will perform request/response processing
without any customer-specific handlers. That is, preferably
customer-specific handlers are optional.

It should be appreciated that scripts are not the same as
sequences. A script is used to specify the sequences to be
used to handle requests for a particular customer. The script
may perform whatever operations it needs (including mak-
ing its own HTTP requests, etc.) to determine what the
sequences should be. For example, a script may also use a
different sequence depending on the local environment.
However, once the script has done that job, the resulting
sequences are used (without rerunning the script) until
something happens (e.g., the script is invalidated and
reloaded) which indicates different sequences are now
needed. Note, however, that a given handler may be imple-
mented as a request/response script in the same language as
the configuration script, but performing a different job.

Customers may provide handlers, parameters for existing
handlers, or routines to be invoked by handlers at certain
stages of the processing.

It should be appreciated that since, as noted, the client
1103 may itself be another component of the CDN (e.g., a
cache or a control core, etc.), the CDN itself may have CCSs
associated therewith. That is, from the point of view of
request/response processing, the CDN may be considered to
be a customer of itself.

With reference again to FIG. 11, the server 1102 will need
the CCS for the customer associated with the request from
the client 1103. The CCS is stored in the database 1106, in
the customer-specific data 1110. If the server does not have
that customer’s CCS stored locally at the time it is process-

25

40

45

50

55

14

ing the client’s request, the server 1102 will attempt to
obtain the CCS from another data source 1110, typically
from a control core 1116. If a CCS is found, any customer-
specific handlers (or sequences) specified in the CCS will be
included in the appropriate locations (hooks) during request/
response processing. In summary, the CCS generally is run
once. It sets up the customer-specific sequences, which are
then cached in their compiled form. If those sequences are
present and valid, they are used without re-running the CCS
(see the “Valid sequences?” decision in the flow chart in
FIG. 20A).

Adding a New Cache to the CDN

When a new cache machine is to be added to the CDN, the
control core needs to get information about that new cache
(e.g., what group/region it is in, its IP address, its VIP, some
capacity information, etc.). Similarly, in order to operate
within the CDN, the new cache machine needs to get the
current customer configuration data and other configuration
data from the control core. A new cache can be pre-
configured so that when it connects to the network (e.g., to
the Internet) it sends a request to the control core for the
resources that it needs. These requests can be made of the
control core using standard HTTP requests. The new cache
may, e.g., request a single configuration object from the
control core, and that configuration object may, itself,
include the URLs of other configuration objects needed by
the cache. The control core may be configured to similarly
request configuration data from the new cache, also in the
form of one or more HTTP requests, although preferably the
new cache provides needed information to the control core
as part of one of its requests. It should be understood that
appropriate security and encryption may be used to prevent
unauthorized connection to the CDN. Once it has sufficient
customer data (global data 1108), the new cache machine
can then begin to function as a CDN cache machine. In some
cases the new cache machine may go through a warming
phase in which it may query its neighbors and preemptively
pull the GCO and some CCS data (e.g., of popular customers
at the neighbor) before accepting any incoming client con-
nections. The cache may, in some cases, pre-fetch popular
content. In some cases the new cache machine may also
influence local load balancing, so that for a period of time it
gets less traffic than other members of the cluster (e.g., until
its cache miss rate is substantially the same as the rest of the
cluster of which it is a member).

The addition of a cache to a CDN is summarized with
reference to the flow charts in FIG. 15A. With reference to
FIG. 15A, a cache newly added to the CDN preferably first
registers with the control core (at 1502). The cache is
preferably configured with a hostname of the control core
(e.g. control.fp.net), and upon being connected to a network
(e.g., the Internet), the cache contacts the control core and
performs some initial registration. This process allows the
control core to determine whether the cache is authorized to
participate in and be a part of the CDN. The registration
process is preferably automated and performed by programs
running on the cache and on the control core. Those of skill
in the art will realize and understand, upon reading this
description, that a new cache may be one that has never been
connected to the CDN before or one that has been discon-
nected for some reason.

Once registered, the cache obtains configuration data
from the control core (at 1504). The cache may request the
configuration data using one or more HTTP requests. In
some cases, e.g., as noted above, the new cache may request
a single configuration object from the control core, and that

US 9,456,053 B2

15

configuration object may, itself, include the URLs of other
configuration objects needed by the cache.

It should be appreciated that the registration (at 1502)
may be combined with the process of obtaining the con-
figuration data (at 1504).

Some of the configuration data obtained during this
process may correspond to the global data 1108 in FIG. 11,
and preferably include the GCO. Since the CDN compo-
nents essentially serve content to each other (e.g., the control
core serves CDN configuration content to the new cache
(and vice versa)), from the point of view of the CDN
components, as noted, the CDN may sometimes be consid-
ered a customer. As such, the CDN may itself have one or
more CCSs associated therewith. Preferably the configura-
tion data obtained from the control core by the cache (at
1504) includes one or more CCSs associated with the CDN.
These CDN CCSs will allow the cache to perform the
appropriate processing when serving CDN content to other
CDN components.

The control core may obtain data from the new cache (at
1506). While the cache may provide some information to the
control core during the initial registration process, the con-
trol core may also obtain additional information from the
new cache after registration. This information may include
information, e.g., relating to the capacity and type of the new
cache.

The new cache will also preferably verify that it is up to
date as far as systen/application software. This may require
a bootstrap process to pull new software packages, e.g., in
the form of RPMs from caches/control core, verifying them,
installing them and restarting (up to and including rebooting
the server to pick up new operating system components for
instance).

At this time the new cache is ready to begin serving
content on behalf of the CDN. However, it may be desirable
in some cases for the new cache to “warm up” by obtaining
information from other caches (at 1508). In particular, the
new cache may obtain customer data (e.g., CCSs) from
nearby caches in anticipation of serving content on behalf of
those customers. Preferably the new cache will query mem-
bers of the cluster to obtain the popular CCSs and popular
content.

It should be appreciated that since the cache is using a
hostname to connect to the control core, the CDN rendez-
vous mechanism can rendezvous the cache to a control core
machine that is “best” or “optimal” for that cache. In some
cases, once the cache has discovered (or been told) which
other caches are members of its cluster and its peers, it may
issue requests destined for the control core to them instead.
This will reduce direct load on the control core and accel-
erate retrieval of such data.

A CDN component’s handling of a resource request is
described with reference to the flowchart in FIG. 15B. It
should be appreciated that the CDN component may be a
cache (e.g., an edge cache, a parent cache, an origin cache,
a control core, etc.), and the requested resource may be any
resource, including resources requested by clients external
to the CDN on behalf of customers or subscribers to the
CDN and those resources that are requested by other CDN
components and comprise CDN data (e.g., log files and the
like).

First, the cache obtains a resource request (at 1510). The
request may be using an HTTP request, and include infor-
mation in an HTTP header. The cache needs the GCO in
order to determine whether the requested resource can be
served. The GCO includes information that will allow the
cache to determine whether the requested resource corre-

20

25

35

40

45

50

16

sponds to a resource of a customer of the CDN (or to a CDN
resource). The cache therefore obtains a current version of
the GCO (at 1512) and determines (at 1514) whether or not
the resource can be served. If the cache needs the GCO or
other information from the control core, the cache can
request that information using appropriate HI'TP (or FTP)
requests, and the cache may obtain the GCO and/or other
needed information from other caches or other locations in
the CDN. For example, FIG. 15C shows various caches
(102) pulling data from the control core 108 using an
HTTPS pull. In order to initiate such a pull, a cache would
make an HTTPS request for the data (using a URL of that
data) and identifying the control core 108 as the source of
the data.

The cache server should serve a particular customer’s
resource to a client in accordance with the processing
requirements (e.g., scripts, etc.) set by that particular cus-
tomer, the cache therefore needs the CCS (if any) associated
with that customer. Accordingly, at 1516, the cache server
obtains the CCS (if any) associated with the requested
resource (i.e., with the customer on behalf of whom the
requested resource is being served). It should be appreciated
that the CCS should be pulled prior to obtaining the resource
(since the CCS may influence where/how to retrieve the
resource).

If the cache determines (at 1514) that the requested
resource can be served (i.e., that the cache is authorized to
serve the resource), the cache may need to obtain a copy of
the resource (at 1518). The CCS (and possibly information
associated with the request, e.g., HI'TP header information)
provides the cache with sufficient information for it to locate
a copy of the resource, if needed. The cache server may
obtain the requested resource from another cache or from an
origin server. In some embodiments the cache server may
redirect the client to another location from which to obtain
the content.

Having obtained the appropriate CCS (if one exists), the
cache server then serves the resource (at 1520) using infor-
mation in the CCS. As explained, the CCS runs before the
cache even obtains the resource to serve, since the CCS may
program handlers at hook points which affect the request
itself, and therefore which affect which resource is going to
be served.

EXAMPLE

FIG. 16 shows an exemplary cache (or streaming) server
1608 operating within a CDN 100. In operation, the server
1608 may obtain resources from one or more origin servers,
using, e.g., the HTTP, FTP, or HTTPS protocols. These
origin servers in FIG. 16 correspond to the origin server(s)
1114 in FIG. 11. These resources may be resources to be
served to clients (not shown). In addition, the server 1608
may obtain resources from other caches (corresponding to
the cache(s) 1112 in FIG. 11), e.g., from peer caches (e.g.,
using the HTTP protocol). The server 1608 may generate log
information, and the collector may obtain that log informa-
tion and other information from the server 1608. The col-
lector may obtain the log information using, e.g., HTTP, and
request that log information using an appropriate URL that
identifies the log information on the server 1608. Essentially
the server 1608 serves the log information as a resource to
the collector.

The server 1608 needs certain information in order to
function properly within the CDN. In particular, the server
1608 may need information about other servers (e.g., its
peers, parents, etc.); it needs information about content

US 9,456,053 B2

17

providers (e.g., subscribers or CDN customers) on behalf of
whom it may serve content; it needs information about
invalid (e.g., stale) content, load information, etc. As to the
load information, it should be appreciated that a regular
cache does not need load info from the control core—it
would send it to a control core (NDC). A cache could,
however, make use of load info from the other machines in
the cluster. The server 1608 obtains the required information
using one or more HTTP requests from the control core 108
or other locations in the CDN (e.g., peer caches). This
information corresponds, at least in part, to the global data
1108 and/or the customer-specific data 1110 shown in FIG.
11 and described above.

Since the control core has at least one domain name
associated therewith (e.g. control.fp.net), each object/re-
source that the server 1608 needs from the control core 108
can be named with a URL and can be requested from the
control core 108 using that URL and an appropriate protocol
(e.g., HTTP). As the control core 108 is preferably a
distributed system consisting of more than one machine, the
server 1608 will be directed (e.g., by the DNS system) to one
of the machines that comprise the control core 108, prefer-
ably to a “best” or “optimal” control core machine for the
cache server 1608. The server 1608 can then request the
control information it needs from the control core 108 using
an HTTP request. As is well known, and as shown in the
drawing, HTTP, HTTPS, and FTP use the following well-
known port numbers: 80 for HTTP; 443 for HTTPS; and 21
for FTP. Those of skill in the art will realize and understand,
upon reading this description, that different and/or additional
ports may be used. It should be appreciated that the selection
of the “best” or “optimal” control core component to serve
the cache server 1608 may be made with the same rendez-
vous and selection mechanism(s) used to direct client
requests to servers in the CDN.

As shown in FIG. 1, a CDN 100 includes operation/
measurement/administration mechanisms 109. These
include mechanisms to obtain and measure load on the
caches 102 and other system components and to measure
and maintain information about the state of the network.
Some of this information is used, e.g., to generate tables and
other data that are used to determine a “best” or “optimal”
location for resource requests. A measurement mechanism
1610 measures and collects load and other information from
the cache 1608 and provides that information to a table
generation mechanism. Measurement mechanism 1610 may
use dynamic and static measurement tests, including ping,
traceroute, and the like. An exemplary table generation
mechanism is described in U.S. Pat. No. 6,185,598, the
entire contents of which have been fully incorporated herein
for all purposes.

As noted above, from the point of view of a client (any
entity that wishes to access the control core cluster 108 or
information in the control core cluster), the control core 108
is considered a single entity accessible, e.g., by its domain
name (e.g., control.fp.net). While a particular client is likely
to always get content from the same control core cluster
component, there is no requirement for that to occur. For
example, if there are five control core cluster components
and one of the five control core cluster components fails or
is otherwise unavailable, a client will access the control core
transparently at one of the other control core components.
Those of skill in the art will realize and understand, upon
reading this description, that, as used herein, the term
“client” refers to any entity trying to obtain a resource from
the control core 108, and, as such, a client may be a cache
102 or some other component of the CDN 100. Additionally,

20

35

40

45

18

as with content from content-providers’ origin servers,
resources that originate at the control core may be served to
a cache by a peer or parent rather than requiring that each
cache pulls directly from the control core 108. (The control
core may be considered to be an “origin server” for the
content for which it is authoritative, e.g., for CDN control
and configuration data.)

Control Core

The control core 108 (FIG. 1) keeps the authoritative
database of the current CDN configuration. Data are repli-
cated across all machines in the cluster, and the cluster uses
a method such as voting to ensure updates and queries are
consistent. In the presently preferred implementation (with
a cluster of five machines), the commits only occur if three
of the five cluster machines agree to commit, and queries
only return an answer if three of the five cluster machines
agree on the answer. The use of voting is given as an
exemplary implementation, and those of skill in the art will
realize and understand, upon reading this description, that
different techniques may be used in conjunction with or
instead of voting on queries. For example, techniques such
as using signed objects to detect corruption/tampering may
be adequate. In some cases, e.g., the system may determine
that it can trust the answer from a single server without the
overhead of voting.

The control core 108 comprises multiple databases that
are used and needed to control and operate various aspects
of the CDN 100. These databases include databases relating
to: (i) system configuration; and (ii) the CDN’s customer/
subscribers. The control core data are described in greater
detail below.

Information in these databases is used/needed by the
caches in order to serve resources on behalf of content
providers. E.g., each cache needs to know when content is
still valid and where to go to get requested content that it
does not have, and the rendezvous mechanism needs data
about the state of the CDN (e.g., cluster loads, network load,
etc.) in order to know where to direct client requests for
resources.

In some embodiments the control core 108 uses a distrib-
uted consensus algorithm—an approach for achieving con-
sensus in a network of essentially unreliable processors.

As described in U.S. Pat. No. 7,921,169 to Jacobs et al.:

In a Paxos algorithm, one example of a distributed con-

sensus algorithm, a server can be selected to act as a
host or lead server by a network server, the network
server leading a series of “consensus rounds.” In each
of these consensus rounds, a new host or lead server is
proposed. Rounds continue until one of the proposed
servers is accepted by a majority or quorum of the
servers. Any server can propose a host or lead server by
initiating a round, although a system can be configured
such that a lead server always initiates a round for a
host server selection. Rounds for different selections
can be carried out at the same time. Therefore, a round
selection can be identified by a round number or pair of
values, such as a pair with one value referring to the
round and one value referring to the server leading the
round. The steps for one such round are as follows,
although other steps and/or approaches may be appro-
priate for certain situations or applications. First, a
round can be initiated by a leader sending a “collect”
message to other servers in the cluster. A collect mes-
sage collects information from servers in the cluster
regarding previously conducted rounds in which those
servers participated. If there have been previous con-
sensus rounds for this particular selection process, the

US 9,456,053 B2

19

collect message also informs the servers not to commit
selections from previous rounds. Once the leader has
gathered responses from at least half of the cluster
servers, for example, the leader can decide the value to
propose for the next round and send this proposal to the
cluster servers as a “begin” message. In order for the
leader to choose a value to propose in this approach, it
is necessary to receive the initial value information
from the servers. Once a server receives a begin mes-
sage from the leader, it can respond by sending an
“accept” message, stating that the server accepts the
proposed host/lead server. If the leader receives accept
messages from a majority or quorum of servers, the
leader sets its output value to the value proposed in the
round. If the leader does not receive majority or quo-
rum acceptance (“consensus”) within a specified period
of time, the leader can begin a new round. If the leader
receives consensus, the leader can notify the cluster or
network servers that the servers should commit to the
chosen server. This notification can be broadcast to the
network servers by any appropriate broadcasting tech-
nology, such as through point-to-point connections or
multicasting. The agreement condition of the consensus
approach can be guaranteed by proposing selections
that utilize information about previous rounds. This
information can be required to come from at least a
majority of the network servers, so that for any two
rounds there is at least one server that participated in
both rounds. The leader can choose a value for the new
round by asking each server for the number of the latest
round in which the server accepted a value, possibly
also asking for the accepted value. Once the leader gets
this information from a majority or quorum of the
servers, it can choose a value for the new round that is
equal to the value of the latest round among the
responses. The leader can also choose an initial value if
none of the servers were involved in a previous round.
If the leader receives a response that the last accepted
round is x, for example, and the current round is y, the
server can imply that no round between x and y would
be accepted, in order to maintain consistency.

In presently preferred implementations, the core control
cluster uses the Paxos algorithm of Lamport and Gray as its
distributed consensus algorithm. Implementations of this
distributed consensus algorithm are described, e.g., in one or
more of: U.S. Pat. No. 7,856,502, titled “Cheap Paxos,” U.S.
Pat. No. 7,797,457, titled “Leaderless Byzantine Consen-
sus,” U.S. Pat. No. 7,711,825, titled “Simplified Paxos,”
U.S. Pat. No. 7,698,465, titled “Generalized Paxos,” U.S.
Pat. No. 7,620,680, titled “Fast Byzantine Paxos,” U.S. Pat.
No. 7,565,433, titled “Byzantine Paxos,” U.S. Pat. No.
7,558,883, titled “Fast Transaction Commit,” U.S. Pat. No.
7,555,516, titled “Fast Paxos Recovery,” U.S. Pat. No.
7,249,280, titled “Cheap Paxos,” U.S. Pat. No. 6,463,532,
titled “System And Method For Effectuating Distributed
Consensus Among Members Of A Processor Set In A
Multiprocessor Computing System Through The Use Of
Shared Storage Resources,” the entire contents of each of
which are hereby incorporated herein for the purpose of
describing the Paxos algorithm.

Various commercial implementations of the Paxos algo-
rithm exist and are available. For example, Google uses the
Paxos algorithm in their Chubby distributed lock service
(see, e.g., The Chubby lock service for loosely-coupled
distributed systems, Burrows, M., OSDI’06: Seventh Sym-
posium on Operating System Design and Implementation,
Seattle, Wash., November, 2006) in order to keep replicas

25

30

35

40

45

50

55

60

65

20

consistent in case of failure. Chubby is used by Google’s
Bigtable (Bigtable: A Distributed Storage System for Struc-
tured Data, Chang, F. et al, in OSDI’06: Seventh Symposium
on Operating System Design and Implementation, Seattle,
Wash., November, 2006) and other products. Microsoft
Corporation uses Paxos in the Autopilot cluster management
service from its Bing product. Keyspace, an open-source,
consistently replicated key-value store uses Paxos as its
basic replication primitive.

Those skilled in the art will realize and understand, upon
reading this description, that other approaches and algo-
rithms may be used instead of or in conjunction with the
Paxos algorithm.

Logging

Caches may write their logs to files on their machines
Logs may also be streamed from the caches in addition to or
instead of being kept as journal-style resources. The inven-
tors realized that logs can be treated as ordinary cache
resources, retrievable via HI'TP or HTTPS using a standard
URL. Thus caches may save logs using the same mecha-
nisms they would use to save any cached resource, with the
difference being that the source of the data is internal rather
than external.

The logging system uses the hierarchical network data
collector to gather, sort and efficiently merge logs.

Logs are internally generated resources that are cached
and pinned until released. Logs are preferably stored in a
format that is space-efficient and easy to parse and interpret.
They are also preferably stored in a way or on a device that
is suitably fault tolerant. Log access is by normal HTTP
requests to the caches, so that the CDN can be used to collect
logs from the caches.

Different views and subsets of the same log data are
possible, based on the request. For efficiency, generated
responses can be cached for a short time.

Logs are collected as necessary by the network data
collector (NDC). In case of crashes, logs are accessible
using a general offline cache content access mechanism. It
should be appreciated that this may lead to a QoS issue, in
that some data are more valuable than others and may
require different retention mechanisms. For instance, data
that are sourced locally may not be re-constructible in case
of'loss (as opposed to a publisher’s resource, which may be
able to be reloaded). So log data may be considered more
valuable than a publisher’s resource. Billing data (a special-
ized version of a log file) is likely most valuable. In some
cases, log data may be sacrificed for space reasons, but
billing data should persist until pulled.

Network Data Collector (NDC)

The network data collector (NDC) is essentially a reverse
CDN. It preferably uses the normal HTTP or HTTPS chan-
nels, with one key extension: a single request may result in
multiple fills that get merged. Flexible fan-in and merge
options are supported. The fan-in and merge operations are
defined by a script. The script is itself a resource. The script
is an example of the Executable Resource mechanism
described below. The root of each collection operation in the
NDC is a single “origin client,” analogous to an origin server
in the CDN.

Component Roles

Certain components of the CDN system may act as clients
of the CDN and/or as content providers to the CDN. For
example, as noted above, the core control cluster maintains
information used/needed by the caches in order for them to
deliver content to clients. When caches obtain control-
related content (resources) from the control core cluster, the
control core cluster is acting as a content provider and the

US 9,456,053 B2

21

caches are acting as clients. Similarly, when a collector
mechanism obtains log and other information from a cache
cluster, the collector mechanism is acting as a client and the
cache cluster is acting as a content provider. And when the
control core cluster obtains information from a collector
mechanism, the control core cluster is acting as a client and
the collector mechanism is acting as a content provider.
When content is being delivered by the CDN to clients on
behalf of a content provider, the caches obtain that content
from origin server sites associated with the content provider.
In some cases, as noted above, a cache server site may try
to obtain requested content from another cache server site
(e.g., from a peer cache server site or from a parent cache
server site). In those cases the peer (or parent) cache server
sites are acting as content providers.

Hierarchy

The CDN preferably uses tree-like hierarchical commu-
nication structures to pull data from the control core and
origin servers to the edge, and to pull data from the edge to
specialized gatherers and monitors. These tree-like struc-
tures are preferably dynamic, i.e., they can change with time,
requirements and circumstances. These structures are pref-
erably also customized, i.e., different communication opera-
tions can use different hierarchies, and different instances of
a communication operation may use a different hierarchy
(e.g., different parents for different origin servers).

For pulling data to the edge, each node needs to know its
parent or parents. For pulling data to the root, each node
needs to know its children. Lists of parents or children can
themselves be resources. Using domain names instead of IP
addresses for parents and children allows the rendezvous
system to be leveraged.

Executable Resources, Customization Hooks and Scripts

Caches 102 in the CDN 100 are able to process and
deliver (serve) executable resources, and CDN users (e.g.,
content providers, the CDN itself) are able to provide
extensions to resources via these executable resources.
Executable resources provide a general and useful extension
that may replace and/or enhance several ad hoc mechanisms
and HTTP extensions in a CDN. Executable resources allow
suitably authenticated HTTP servers to respond to an HTTP
request with a new type of reply (possibly identified by an
extension status code such as “600 Exec” or a new Content-
Type, e.g., say “application/x-fp-exec”). The contents of
such a reply are a script to be executed by an interpreter in
the response path of the cache, in order to generate the actual
reply. Examples of things the interpreter may do are:

Fill the request from an alternate location.

Fill the request from multiple locations and merge the

results.

Perform authentication.

Pre-fill one or more other resources.

Perform manipulations on the body of a resource (e.g.,

compression, transcoding, segmentation, etc.)

If the reply is cacheable, it may be retained by the cache,
and executed each time the resource is requested.

The NDC may use this feature to gather logs.

The system provides a way to distinguish between
requesting the script itself, and requesting the result of
executing the script. Scripts are subject to pinning, expira-
tion, invalidation and revalidation just like any other
resources.

Customer-specific code can be added at numerous hook
points in the processing. Such customer-specific code may
be used, e.g., for:

request manipulation after parsing;

calculation of cache key for index lookup;

10

15

20

25

30

35

40

45

50

55

60

65

22

coarse and fine details of authentication;

content negotiation choices, variants, and encodings;

policies for range handling;

deciding which peers to contact or migrate to;

which host(s) to contact for fills;

contents of fill request;

manipulation of fill response;

handling of origin server errors;

caching policy;

manipulation of response to client;

logging effects.

A wide variety of hook points enable CDN users (cus-
tomers) to modify existing algorithms; pre- or post-process
algorithms; and/or completely replace algorithms. In a pres-
ently preferred embodiment, these are the customer-specific
sequences which are set at various hook points by the CCS.

In a present implementation, scripts can be used for:

Configuration

Customer-specific event handling and HTTP rewriting

Network Data Collection operations

Rapid prototyping of new features

Scripts are preferably cached objects (like other objects in
the CDN). They are preferably compiled into byte code and
executed in a sandbox by a virtual machine Scripts are
preferably measured for CPU usage and are effectively
preemptible.

In a presently preferred implementation scripts are imple-
mented using the Lua scripting language. Lua compiles into
bytecodes for a small register virtual machine Lua’s primary
data type is a table (which is implemented as a hybrid
between a hash table and an array), but it also has other types
(string, number, Boolean, etc.). Lua’s interface to the rest of
the system is via various function bindings which are a
means for a Lua function call to cause a system function
(instead of another Lua function) to be called. The details of
a particular binding, including the data it operates on and the
results it returns to the Lua script, are specific to the binding
in question and may involve tables (e.g., hash table objects)
or other types of objects.

Those of skill in the art will realize and understand, upon
reading this description, that a different scripting language
could be used. However, it should be appreciated that any
scripting language should run (e.g., be interpreted) quickly
with a small interpreter, have a relatively small implemen-
tation, (be lightweight—have a small memory footprint and
be easily sandboxed for secure execution) and provide
sufficient control to allow customer-derived scripts to be
used. It should be noted that “script” does not necessarily
imply interpreted at run time, but rather it is used in a
broader sense to mean loadable code.

It should be appreciated that basic cache functionality
requires no scripts, and the CDN will operate without them
to serve content. Hooks allow script execution at various
points in the cache’s processing path and may be used (if
permitted) to enhance and modify content delivery.

Hooks may be either:

Customer-visible. Monitored, accounted, billable.

Ops-visible. Monitored.

Development-visible. Minimally restricted.

At hook points, one can specify either:

A canned (predefined) algorithm name; or

An expression (e.g., an in-line script or an expression in

the script language); or

A handler or series of handlers; or

The name of a script

US 9,456,053 B2

23

In some implementations, scripts used in request process-
ing may:

Inspect the request

Modify the request

Generate a response (including replacing an already gen-

erated response)

Provide a short static body

Provide a function to incrementally generate longer

response body

Provide a function to filter a response body

Inspect an already generated response

Modify an already generated response

Launch any number of helper requests

Synchronously—wait for and inspect response
Asynchronously—“fire and forget”
Cacheable or non-cacheable

Configuration variables similarly support script execu-
tion, e.g., a variable can have an immediate value, be a
parameter reference, or determined by an inline expression.
For example, the variable fill_host is shown here with
different types of values:

fill_host="origin.customer.com”—immediate value

fill_host=$host]—parameter reference

fill_host=“origin”.domain($request host)—inline expres-
sion

fill_host=http://origin.customer.cony/scripts/pick_origin-
Jua—reference to a script

It should be appreciated that these values are given only
by way of example of the type of values. These expressions
will preferably be in the script language (e.g., Lua).

Cache Organization

FIG. 17 is a block diagram showing the major functional
modules (collectively 1700) in an exemplary cache. These
modules include Executive 1704, manifest channel 1706,
global strategizer 1708, outgoing connection manager 1710,
fill manager 1712, HTTP parsers 1714, 1715, HTTP format-
ters 1716, 1717, incoming connection manager 1718,
rewriter 1720, index 1722, store manager 1724, peer man-
ager 1726, 10 1728, intercache transport protocol 1730, and
rulebase 1732. These modules and their operational connec-
tivity are shown by way of example, and it should be
appreciated that a cache may include different and/or addi-
tional modules, and that the modules in a cache may have
different operational connectivity.

The Executive 1704 is the basic executive controlling all
activities within the cache. The Executive’s responsibility is
to maintain a prioritized list of runnable tasks, and execute
them in a priority order. A high-priority “system” task
repeatedly checks for ready file descriptors, and moves their
waiting “user” tasks onto the run list. The Executive may
also support abstracting a task or group of tasks as an
asynchronous service called a channel, and may provide a
clean way for tasks and channels to communicate. Cache
subsystems discussed below are implemented as tasks and
channels.

When a new client connection is detected on one of the
listener file descriptors, the Incoming Connection Manager
1718 assigns a client task to handle it, and coordinates the
process of accepting the connection, completing any TLS
(Transport Layer Security) handshake, and assigning a pri-
ority and connection-level policy. The Incoming Connection
Manager 1718 continues to monitor and manage the con-
nection throughout its lifetime.

Although the Incoming Connection Manager 1718 is
described here as a single component, it should be appreci-
ated that this is merely one logical depiction of functionality
in the cache. E.g., in a present implementation there is a

10

15

20

25

30

35

40

45

50

55

60

65

24

listener task which, after receiving a new connection, runs a
sequence of handlers which are configured for that particular
listener. Those handlers may apply policies, perform a TLS
upgrade if appropriate, etc.

The client task invokes the HT'TP Parser 1715 to read data
from the connection, locate the message boundaries, and
parse the HTTP into a request object with a convenient
internal format. Messages remain in this internal format as
long as they are within the cache system (the CDN), even if
they are migrated to another cache. It should be appreciated
that cache-to-cache messages may be in other formats, e.g.,
in some cases, messages may be sent from cache-to-cache in
their standard text format.

The request object may next be processed by the rulebase
1732, to assign customer-specific handling policies and
normalize the URL associated with the request. The policy
might indicate, e.g., that the request requires manipulation
by a customer-defined script. In that case, the request
rewriter 1720 executes the script. In a present implementa-
tion a table (the GCO) is used which, in conjunction with the
apparent target of the request, to decide whether or not it is
worth it to continue further processing at all (i.e., whether
the request is associated with a valid customer). At this
point, the system checks whether there is a programmed
sequence of handlers appropriate for that customer. If not,
the system retrieves and runs the Customer Configuration
Script, whose function it is to program the sequence of
handlers. Then the handlers are run to process the request.

The next step is to determine if the cache has any
information about the requested object. The request is pre-
sented to a manifest channel which then inspects the request
and uses the information it has internally (a manifest) to
determine how best to handle the request, including by
providing a reference to a cached object, requesting a fill or
a refresh, etc. The manifest channel maintains the manifest
data and also provides the intelligence to use the manifest
data. The URL is looked up in the cache index 1722, which
is essentially a database listing the objects already in the
cache. The result of the index lookup is either null, or a
manifest listing all the data, metadata and ongoing activities
that might be relevant in responding to the request.

At this point, the request processing engine has a set of
request-specific information, comprising the parsed request,
a set of policies for handling the request, and a manifest of
pertinent cache information. As noted, a manifest channel
1706 is responsible for determining how to respond to the
request. In general, the decision will depend on the request-
specific information, the object-specific information, the
current state of the machine, the global state of the CDN, and
the set of capabilities implemented in the cache. There may
be one strategizer instance running for each actively refer-
enced manifest in the cache, and that strategizer handles all
clients and activities referencing that manifest. In a current
implementation the strategizer is the manifest channel.

The manifest channel 1706 has at its disposal a variety of
modules, implementing services, the services including the
storage service, fill service and peering service. Other mod-
ules may be available for error message generation, authen-
tication, logging, throttling, etc. The role of the strategizer is
to orchestrate these services to construct a reply to the
request, and preferably to fully process the request (since
logging is part of the processing but not necessarily part of
the reply).

The manifest channel 1706 contains much of the intelli-
gence in the cache. New capabilities may be added and
special handling provided in the manifest channel 1706 for
new classes of resources. For this reason, the architecture is

US 9,456,053 B2

25

designed to provide clean separation of mechanism and
policy. Machinery/mechanisms implementing individual
services are encapsulated into separate modules, and the
manifest channel 1706 essentially acts as a conductor,
supervising the construction of a response.

The most common scenario is expected to be a simple
cache hit, where the cache has an easily accessible copy of
the requested object. In this case, the manifest channel 1706
invokes the storage service (store manager 1724) to retrieve
the object, which may be in memory, or on solid-state or
hard disk (generally denoted 1734). In the process, the
manifest channel 1706 may also provide guidance to the
storage service (store manager 1724) on what type of future
access is expected, so that the object can be optimally placed
in the appropriate type of store.

Another common scenario involves a dynamically-gen-
erated response, such as a response to a control command,
a statistics report, or an error message.

When a request is received, an initial sequence of handlers
is assembled to handle the request (based on the target of the
request and the listener it came in on). The handlers either
generate a response because the request is directed at them,
add some value by performing a request or response
manipulation, or take themselves out of that instance of the
sequence because they are not relevant to the request at
hand. A handler may be a script handler, and that script can
perform any number of functions (as outlined previously) to
generate a response or to manipulate a request or response.
The “manifest channel” is one component used by a series
of handlers, but it is concerned with dealing with cacheable
resources. It is generally not involved in determining
whether, e.g., pre-authentication needs to be performed
(which could be handled by a handler in the cli-req hook or
similar).

As noted earlier, an important aspect of the architecture is
that essentially all data items, including machine configu-
ration, customer policies, logs, billing data and statistics, are
simply web objects, which appear in the index and are
retrieved through the strategizer just like customer web
resources. As critical resources, they do have policies engag-
ing specific authentication, persistence and prefilling ser-
vices, but the machinery of these services is also available
to ordinary resources when necessary.

A feature of Unix file I/O is that read and write operations
on standard files are synchronous, and will block the calling
thread if the data needs to be physically retrieved from or
written to disk. Since the cache likely has plenty of other
work to do while disks are being accessed, the 1O library
1728 provides a way for the cache to hand off disk /O to a
separate thread that can block without holding up the cache
activities. In addition, the IO library 1728 provides a richer,
more efficient API to the physical disks than the normal
open/read/write/close interface.

If the request is not a cache hit, the manifest channel 1706
will typically invoke the peering service (peer manager
1726) to see if a nearby cache has the requested object. Since
other services may also need to communicate with neigh-
boring caches, and it is inefficient to open or operate multiple
TCP connections to multiple neighbors, an intercache trans-
port protocol module 1730 multiplexes various types of
intercache communication over a single general-purpose
link. For instance, the peering service might offer to migrate
the client connection to a neighbor that has the resource; the
strategizer could choose to use this option, in which case it
would invoke the migration service, which would use the
intercache transport protocol to transfer the client connec-

25

30

35

40

45

26

tion state. As before, it should be appreciated that one or
more handlers perform this function.

If the request is not a hit, or internally serviced or
migrated, the resource needs to be fetched via the network,
and the fill service (fill manager 1712) is invoked. The fill
manager’s role is to balance and prioritize the outgoing
network activity between all strategizers, and operate pro-
tocol handlers for the supported set of protocols. In particu-
lar, for HTTP fills, the strategizer will create an HTTP fill
request in internal format, and the fill service will format that
request using the HTTP formatter 1716, send it to the
appropriate target host, and manage the data transfer. For
efficiency, connections are created and managed by an
outgoing connection manager 1710, which maintains a pool
of connections to frequently accessed hosts, tracks respon-
siveness, implements traffic shaping, etc. In a current imple-
mentation, the manifest channel creates the fill request.

Some fill operations will be peer fills from other caches,
and these likely constitute the main class of intercache
communication not using the Intercache Transport Protocol.
Such fills may use the internal message format and bypass
unnecessary HTTP formatting and parsing steps.

Fill responses arriving from the network are handed back
to the manifest channel 1706, which decides whether to
cache the object, and how to process it before replying to
waiting clients.

It should be appreciated that the manifest channel 1706
would not invoke a “reply rewriter.” Rather, such a rewriter
(if any) would exist at one of the hook points on the response
path, e.g., client-resp, and would be used regardless of
whether a manifest channel was involved in generating the
response. Such a rewriter may inspect the response to
determine if it came from cache, however it is not up to the
manifest channel to invoke this rewriter. The manifest
channel would not generally be involved in a request which
was a priori known to be non-cacheable. On the other hand,
a “reply rewriter” may well be involved in such a request.

As on the input path, the manifest channel 1706 invokes
appropriate services to do the actual work, and supports
optional processing by a reply rewriter 1720 just prior to
final formatting and output to the client. Those of skill in the
art will realize and understand, upon reading this descrip-
tion, that this type of processing (final formatting, etc.) is
performed by one or more handlers on the way “out” of the
processing sequence.

The manifest channel 1706 is responsible for handling a
single URL, and optimizing the experience of the clients
currently requesting the resource associated with that URL.
The global strategizer 1708 is responsible for optimizing the
overall cache behavior, and the behavior of the CDN as a
whole. The global strategizer 1708 comprises a set of
permanently running background tasks and services that
monitor and manage the cache, performing operations such
as discarding old objects, prefetching latency-sensitive
objects, and enforcing quotas. Like the manifest channel,
global strategizer is preferably architected to cleanly sepa-
rate policy and mechanisms, thereby allowing for future
enhancement and adjustment.

The global strategizer 1708 influences the manifest chan-
nel 1706 by adjusting a variety of modes and levels which
the manifest channels consult when making their decisions.
In turn, the global strategizer monitors the effects of the
mode and level changes, and adjusts them as necessary to
achieve the desired global conditions. Thus, the global
strategizer is the module in charge of the various feedback
loops in the cache. For instance, by adjusting the maximum
allowed object age, it can control the amount of data in the

US 9,456,053 B2

27

cache, and by adjusting the maximum size of objects
allowed in the memory store, it can influence the amount of
memory in use. In some implementations there may be no
global strategizer and the storage system will manage its

own resources, etc. 5

Implementations and embodiments of various compo-
nents are described in greater detail below. Those skilled in
the art will realize and understand, upon reading this
description, that the details provided below are exemplary
and are not intended to limit the scope of the invention.

The Manifest Channel 1706

The manifest channel 1706 handles issues related to a
single resource. Its job is to deliver an optimal response to
each client based on various factors such as, e.g., request
details, policy settings, cache contents, state of devices, peer
caches, origin server, network, etc. The manifest channel
1706 consists of an extensible collection of efficient mecha-
nisms, e.g., for retrieval from disk; connection migration;
filling from origin; checking peers, etc. A control module
orchestrates the mechanisms, using canned algorithms for

10

15

28

common situations and providing hooks for introducing
variations to these canned algorithms. The Manifest channel
1706 may be completely scriptable, if necessary. The mani-
fest channel 1706 may provide clean separation of mecha-
nism and policy and may be more general than a pipeline. In
a present implementation, the manifest channel 1706 is
sequence (a pipeline of sorts), although each of the steps of
the sequence may be arbitrarily intelligent (including being
a script).

At any moment, there is one instance of the manifest
channel 1706 running for each manifest being actively
accessed. The role of the manifest channel is to coordinate
all activities associated with the manifest, ensure that each
client requesting the object is sent an individualized
response meeting the policy constraints, and that this is done
as efficiently as possible and without violating other con-
straints imposed by the global strategizer.

The manifest channel 1706 preferably includes a set of
mechanisms with associated logic to perform some or all of
the following (this is essentially a potential list of “han-
dlers.”):

Mechanism

Functionality

Authentication

Referer
Checking

Browser

Identification

Hot Store

Cold Store

Peering

Migration

Connection
Splicing

Longtail

Fill Target
Selection

Range

Partial Object

Handling

Error Message
Construction

Redirection
Command
Handling

Performs authentication handshakes with the client and
queries internal databases or external servers as necessary for
permission to serve the resource to the client. These are
typically synchronous operations. Internal databases are
cached web objects, and may also need to be refreshed
periodically.

Handles cases where the reply depends on the HTTP referer
header. General functions in the rulebase and rewriter will
classify the referrer, and this module implements the
consequences of that classification (this is essentially an
example of authentication)

Handles cases where the reply depends on the HTTP User-
Agent header and potentially on other headers.

Allow objects to be identified as high-popularity and worth
keeping in fast storage such as application memory, the OS
page cache or solid-state disks, and for communicating that
fact to the storage manager.

Allow objects to be identified as low-popularity and suitable
for archiving to more extensive but higher latency un-indexed
mass storage.

Checking for information about which peers are likely to have
an object, and for directly querying peers via the peering
service.

Deciding when to migrate a connection to a neighboring
cache, and for marshalling the state to be transferred.
Handling non-cacheable traffic such as POST requests, by
delegating further interaction with the client to the operating
system, so that it can efliciently relay raw data between the
client and the remote server. Also monitor the progress of such
relays for logging and diagnostic purposes.

Dealing with resources making up working sets that exceed
the size of the cache. The module includes counters for
determining the popularity of such resources, and support for
special types of filling and redirection that allow the CDN to
handle them efficiently.

Support for filling resources in a flexible way, e.g., from load
balanced clusters, from various locations, or with a variety of
protocols.

Dealing with range requests, for deciding whether it is worth
fetching the entire object, and for formatting HTTP Partial
Content (206) replies.

Assembling separately-fetched parts of the same object into a
complete object, either logically or physically.

Formatting of informative and appropriate HTTP error
messages for the client when the request fails in some way.
Efficiently redirecting clients to other locations.

Acting upon requests to the command, monitoring and logging
subsystems, and for constructing a variety of internally
generated responses.

US 9,456,053 B2
29

-continued

Mechanism

Functionality

Vary

Content
Encoding
Transforms

Logging

Tracing
Billing
Throttling
Keepalive
Transfer
Encoding
Shaping
Prefetch
Refresh

Retry and
Failover

Content negotiation is defined in Network Working Group,
Request for Comments 2616, Hypertext Transfer Protocol -
HTTP/1.1 (hereinafter “RFC2616”), the entire contents of
which are fully incorporated herein by reference for all
purposes.

The Vary field value indicates the set of request-header fields
that fully determines, while the response is fresh, whether a
cache is permitted to use the response to reply to a subsequent
request without revalidation. For uncacheable or stale
responses, the Vary field value advises the user agent about
the criteria that were used to select the representation. A Vary
fleld value of “*” implies that a cache cannot determine from
the request headers of a subsequent request whether this
response is the appropriate representation. RFC2616 section
13.6 describes the use of the Vary header field by caches.
According to RFC2616, an HTTP/1.1 server should include a
Vary header field with any cacheable response that is subject
to server-driven negotiation. Doing so allows a cache to
properly interpret future requests on that resource and informs
the user agent about the presence of negotiation on that
resource. According to RFC2616, a server may include a Vary
header field with a non-cacheable response that is subject to
server-driven negotiation, since this might provide the user
agent with useful information about the dimensions over
which the response varies at the time of the response.
According to RFC2616, a Vary field value consisting of a list
of fleld-names signals that the representation selected for the
response is based on a selection algorithm which considers
only the listed request-header field values in selecting the most
appropriate representation. According to RFC2616, a cache
may assume that the same selection will be made for future
requests with the same values for the listed field names, for
the duration of time for which the response is fresh. The field-
names given are not limited to the set of standard request-
header fields defined by the RFC2616 specification. Field
names are case-insensitive and, according to RFC2616, a Vary
fleld value of “*” signals that unspecified parameters not
limited to the request-headers (e.g., the network address of the
client), play a role in the selection of the response
representation. According to RFC2616, the “*” value must not
be generated by a proxy server; it may only be generated by an
origin server.

In some cases it may be desirable to have a communication
channel between the CDN and the origin server, in order to
ingest policy information about variant selection performed at
the origin so that the same can be directly replicated within the
CDN rather than being inferred from a series of responses
from the origin.

Content negotiation as defined in RFC2616.

Converting from one content encoding to another within the
cache, as a service to customers.

Controlling the amount and type of logging information
generated by the request processing, and for saving that
information in internally generated objects for later retrieval
by special HTTP requests and/or remote logging.

Enabling diagnostic tracing of the processing, either globally
or for a specifiable subset of requests or resources.
Collecting a variety of billing-related information while the
request is being processed.

Allow certain types of actions to be delayed based on advice
from the global strategizer.

Checking various factors that influence the decision to allow
connections to persist, and methods for conveying or
delegating the final decision to the connection manager.
Deciding what transfer encoding to apply, and for applying it.

Deciding on what bandwidth to allocate to a network activity,
and for conveying this information to the connection
managers.

Allows a request for one resource to trigger prefetching of
other resources, from disk, peers or the origin.
Implementation of the HTTP “GET If-Modified-Since” etc.,
and “304 Not Modified” mechanism, as well as the
background refresh feature.

Allow failed fills to be retried from the same or a different fill
target.

30

US 9,456,053 B2

31

-continued

32

Mechanism Functionality

Cachability
by the Storage Service.

Script execution

Replacement
useful and can be destroyed.

Execute requests and replies that are CDN internal scripts.
Decide which objects in the manifest are no longer sufficiently

Decides if, where and for how long an object should be cached

Global Strategizer 1708

The global strategizer 1708 is the subsystem responsible
for overseeing the operation of the cache as a whole, and the
cache’s relationship to other parts of the CDN. The global
strategizer is preferably running at all times, and keeps track
of extrinsic parameters such as the amount of storage used,
the number of clients, etc. In turn, it controls operation of the
cache by adjusting intrinsic parameters like the LRU (Least
Recently Used) Aggression and the listener poll and accept
rates.

Invalidation. The global strategizer is responsible for
fetching, preferably roughly once per second, updates to the
primary invalidation journal from the CDN control core,
fetching updates to any secondary journals that the primary
indicates have changed, and invalidating the resources that
the secondary journals indicate have been invalidated. It
should be appreciated that the control core for customer
invalidations may not be the same control core as used for
configuration data (and invalidations associated with it).
Different groups of customers may be put onto different such
control cores for invalidation.

Automatic Refresh. This mechanism allows selected
resources to be refreshed even when they are not being
requested externally, so that they are always up to date. The
invalidation journal mechanism is essentially a special case
of this.

Load Metrics. The global strategizer is in charge of
measuring the total load on the machine, and responding to
requests for load status.

Platform Configuration and Control. Mechanism to act
upon configuration information from the control core.

Listener and 10 Event Rate Control. Controls the rate at
which new connections are accepted, and the rate at which
file descriptors are polled for readiness.

As with the other components/mechanisms described
herein, the functions described here are not necessarily
performed by a single entity or mechanism but by multiple
tasks or sequences. However, those of skill in the art will
realize and understand, upon reading this description, that
the set of tasks which perform these functions could be
considered as making up the “global strategizer.”

Control Core Data

As noted above, the control core 108 maintains the
authoritative database of the current CDN configuration and
of information needed to operate the CDN. The database
includes various interconnected tables that are used to
describe and/or manage the CDN. With reference to FIGS.
18-19, the database includes system configuration objects
1802, customer configuration objects 1804, a customer
invalidation journal 1806, and a master journal 1808. Those
of skill in the art will realize and understand, upon reading
this description, that different and/or other objects may be
maintained in the database.

In a presently preferred implementation, the control core
108 maintains and stores some or all of the following
information (as part of the system configuration objects

10

15

20

25

30

35

40

45

50

55

60

65

1802 or customer configuration objects 1804), some of
which may be used for rendezvous, and some of which is
used by cache machines:

Global Configuration Object (GCO) (1912)

The GCO is described in connection with request
response processing.

Customer Configuration Scripts (CCSs)

Customer Configuration Scripts are described in connec-
tion with request response processing.

HostTable (1902)

The HostTable 1902 is a list of all machines in the
network. This list is maintained in a table (HostTable) that
includes, for each machine, its network address (IP address),
and preferably its bandwidth capacity.

The HostTable preferably stores a Bandwidth Capacity
value (BWcap). A BWCap value is also stored in the cluster
table, described below. An actual value for Bandwidth
Capacity value is derived from these two values according
to the following table in which clusterBW represents the
bandwidth capacity value set on the cluster, hostBW repre-
sents the bandwidth capacity value set on the cache and
nhosts represents the number of machines in the cluster:

clusterBW HostBW BandwidthCapacity
0 0 0
>0 0 clusterBW/nhosts
0 >0 hostBW
>0 >0 min(clusterBW/nhosts, hostBW)

While it should be sufficient to use just one of these tables
to set BandwidthCapacity, as described here, this is not
always the correct approach. Specifically, the calculated
BandwidthCapacity variable is preferably not used by the
server selector (SS) mechanism (of the rendezvous mecha-
nism), rather the server selector directly uses the value from
the ClusterTable for shedding based on cluster-total band-
width, and the value from the HostTable for shedding based
on per-host bandwidth. The BandwidthCapacity is set in
both tables, since the HostTable entry tracks the uplink from
host to switch whilst the BandwidthCapacity at the cluster is
the uplink from switch into the network fabric.

The reason that the server selector does not use the
calculated per-host BandwidthCapacity is that it is generally
wrong for purposes of controlling shedding to avoid satu-
rating a per-host uplink. That is, if BandwidthCapacity is set
only in the ClusterTable, then the system calculates a
per-host value as clusterBW/nhosts (see above table). But
e.g., if there are twenty machines sharing a 10 G uplink, that
value is 0.5 G, which is too small: each machine should be
able to individually burst to 1 G (or higher, depending on the
connection from each server to the switch) before causing
shedding (assuming the overall cluster uplink is not satu-
rated, i.e., not all machines using 1 G at the same time). Or,
e.g., if there are five machines sharing a 10 G uplink, the

US 9,456,053 B2

33

system would calculate 2 GG, which would be too large if the
individual machines only have a 1 G link.

Therefore the BWcap values should generally be set both
in the HostTable and ClusterTable.

As there should be an entry in the HostTable for every
machine in the network, non content serving machines
should have their BWCap value set to zero.

Each type of machine at a location should be grouped into
one or more clusters, with a corresponding entry in the
ClusterTable (1904).

SMED Table (1908)

The SMED Table 1908 is a list of “measurement equiva-
lent” caches in a table (SMEDTable). In practice, this list
equates to a rack of hardware; i.e., the set of machines
plugged into a single router. Each entry includes one or more
clusters.

Cluster Table (1904)

The Cluster Table 1904 describes each cluster. Recall that
a cluster is not the same as a site (all of the machines that are
plugged into a given switch), but the subset of those
machines that share the same set of VIPs. As such, there may
be multiple ClusterTable entries for a given site. The Cluster
Table stores information about the region(s) that each cluster
is in.

Each cluster contains a number of HostTable entries, one
for each physical machine, and one or more VIPs (each of
which is represented by an entry in the VIPTable).

All machines on the network should be represented in this
ClusterTable (and directly in the HostTable). To be able to
identify which are content serving machines, there is a flavor
column in the ClusterTable.

As with the HostTable, non content serving clusters
should have BWCap set to zero. Having these machines
represented in these tables allow for infrastructure compo-
nents such as the measurement components to make use of
processes on non-content serving machines.

VIP Table 1906

A VIP is the locally load-balanced address, handed out as
the target of rendezvous. If this VIP is used for secure traffic,
it contains a reference to a node in the SSLTable, otherwise
the sslKey is set to NULL (indicating HTTP traffic).

As such, there is one entry for each VIP address in the
network. Non content-serving clusters do not need to have
VIPs defined.

SSL Table 1910

An entry in the SSLTable describes one “secure” property;
it identifies the mapping between super-name and certificate.

Flavors Table 1912

The Flavors Table 1912 describes characteristics that are
shared by all machines of a certain flavor (e.g., content
serving). The term “flavor” is used here to distinguish
between machines that perform different functions within
the CDN (e.g., content serving, etc.).

CoServers Table 1916

As used herein, a co-server, with respect to a particular
resource, is an origin server—the authoritative source of the
particular resource. The CoServers Table contains descrip-
tions of all CoServers (origin servers) and Alias Nodes
defined in the system. This table holds information about all
customer origin servers registered with the CDN. This table

10

20

25

30

40

45

34

is used to associate incoming requests to these entries, and
describes how, and from where, the resource needed to
satisfy that request is to be retrieved. Note that as CDN
objects are also handled by the CDN, some CDN servers
may function, at times, as co-servers.

Alias Nodes are associated with a Base CoServer, and
provide a way to separately report and log traffic associated
with a particular alias attached to a CoServer without
needing to cache the same resource multiple times.

The CoServers table preferably includes the following
fields:

Field Description

IsActive Flag indicating whether or not the entry is considered to be
active.

A numerical subscriber ID number; a key into the Subscriber
Table (1918).

The unique ID number associated with this entry (this value
is also a key into this table). When adding an entry to the
table, this is set to the value of NextCosID.

The port number over which the origin server associated
with this entry should be contacted for cache fill purposes.
The Alternate Web Root, the location within the content tree
of the origin server where the ‘root” associated with this
property is configured to be. That is, when performing a
cache fill the value of this is prepended to the incoming URI
path on the request (see Extended Aliases). Defaults to </
(although any trailing */* on this value is removed during the
conversion process, making the default effectively **).

The name of the origin server associated with this entry. Can
be specified as either a FQDN or as an IP address. If no
AltOrigin specification is in place, this is used to both find
the address of the origin server to contact for a cache fill, and
specifies the value of the Host: header when filling over
either the HTTP or HTTPS protocol This field also provides
the root name of any log files associated with this entry.

A Boolean flag (1 or 0) which indicates whether this entry is
an Alias or not. An entry can be either an Alias or CoServer.
It is not possible to have both this and IsCoserver set. This
flag may be combined with IsCoserver into a single flag
since only one of these two flags can be set.

A list of CoServer-Wide Flags that specify properties or
configuration options that apply to the CoServer as a whole.
A Boolean flag (1 or 0) which indicates whether or not this
entry is a CoServer. This flag may be combined with IsAlias
into a single flag since only one of these two flags can be set.
Which protocol to use when contacting the origin server
associated with this entry. In presently preferred
implementation, options are ‘HTTP’, ‘HTTPS’ and ‘FTP’.

A list of aliases associated with this entry. An incoming
request is compared to the list of these aliases when
determining which entry is associated with that request. As
such, each alias needs to be unique, and so these form an
additional key.

As for all transaction tables, this indicates the table sequence
number which last updated this row.

SubID

CosID

Port

Alt
WebRoot

Hostname

IsAlias

CSWFlags

IsCoserver

Protocol

AliasList

SeqNum

Subscriber Table 1818

The Subscriber Table 1818 includes information about
subscribers to the CDN (e.g., the CDN’s customers).

Aliases

An Alias is a name by which a CoServer is known to the
network, and is used to identify that CoServer during request
processing. The term alias can refer to both the format of this
identifier, as well as certain attributes of the identifier. A list
of ways that the term is used follows:

Term

Meaning

Simple
Alias
Extended

a FQDN (Fully Qualified Domain Name); the value of the Host:
provided to the CDN by the client, e.g., fp.example.com
an alias may include a top-level directory, in which case a match

US 9,456,053 B2
35 36

-continued

Term

Meaning

Alias

Wildeard
Alias

Primary
Alias

Secondary
Alias

AltID
Aliases

Alias Node

Request
Processing

requires that both the presented Host: header and initial path element
match the alias, e.g., fp.example.com/dir. This allows behavior to be
specified for different top-level directories of URLs presented to the
CDN; for instance, a particular directory could be filled from a
different origin server. In some cases this may include an arbitrary
amount of path.

the initial element of the hostname portion of an alias can be a**’ in
which case it will match any subdomains. e.g., *.example.com will
match fp.example.com and fp.subdir.example.com, as well as the
unadorned example.com.

Note: that a Wildcard Alias may also be an Extended Alias; e.g.,

* example.com/dir.

The wildcard character has to be a complete hostname element; i.e.,
it is not possible to have *fp.example.com.

The first alias in the list associated with a given CoServer. Any
request using a Secondary Alias is rewritten early on in request
processing so that it seems to the system that it was actually using
the Primary Alias.

As such, if the Primary Alias is a Wildcard Alias, then there cannot
be any Secondary Alias.

Also, each matching Host: header presented will cause a separate
resource to be resource (i.e., the system will behave as if all the
resources for that CoServer included a Vary: Host).

Any non-Primary Alias on the list associated with a given CoServer.
When a request is received that matches a Secondary Alias, the URL
is internally converted so that it seems that the request was requested
using the Primary Alias instead. This means that the list of
Secondary Aliases is treated as synonyms of the Primary Alias. See
also AltID Aliases below.

A Secondary Alias (qv) that is associated with an alias node, this
allows traffic received over specific Secondary Aliases to be tracked
(for both logging and reporting/billing purposes) separately. The Alt
ID reErs to the ID number of the alias node under which the request
should be logged/tracked.

This is an additional entry in the ReflectorTable that is associated
with a given CoServer (which is then referred to as the Alias Node’s
Base CoServer). This must belong to the same Subzone as the Base
CoServer, and should be configured to have the same hostname, etc.
The CoServer ID associated with this Alias Node is then used when
logging/tracking traffic for this AItID Alias. The Primary Alias of
the Alias Node should be set to the same value as the AltID Alias of
the Base CoServer (but without the AItID itself). This value is used
as the Nickname when displaying data for this alias in the Reporting
Portal

The complete set of active aliases (i.e., those associated with active
CoServers), be they Simple, Extended, AltID, Primary or

Secondary, are used to populate a hash table within the agents of the
network. This hash table provides a mapping from each alias to the
CoServer ID associated with that alias.

When a request is received, the first path element of the request is
joined to the value of the Host: header, and a lookup into this hash
table performed. If no match is found, a second lookup is performed
of just the Host: If a match is then found, processing completes since
the appropriate CoServer has then been found. In some

embodiments the initial lookup is done with the Host: header only,
and if an extended alias exists, a flag is set that indicates so and then
a second lookup performed.

If no match is found, then a second hash table is inspected, which
contains down cased versions of the directory element of each
extended alias (the Host: value always being processed down case).
If a match is then found, and this CoServer has the ncurl = CSWFlag
set, then a match is declared, and processing completes.

If however no match is yet found, a search for a possible Wildcard
Alias match then begins. The most significant two hostname
elements (e.g., example.com) are looked for in another hash table; if
an entry there exists, then the next hostname element is added and
another check performed. This continues until an entry marked with
an hasWildcard flag is set, indicating that a matching Wildcard Alias
exists.

If the matching entry is marked as having a directory extension, then
a check of the top-level path element from the URL is then made,
similar to the processing for a normal Extended Alias. If no such
match is found, then a match on the Wildcard Alias is only declared
if a Simple Wildcard Alias is defined.

US 9,456,053 B2

37

Request-Response Processing

FIG. 13 showed the logical structure of a cache and its
various components. The processing performed by some or
all of these components may be performed by sequencers. A
sequencer uses a sequence control object which is made up
of an ordered list of handlers. In a presently preferred
implementation, a sequencer is an Executive task (prefer-
ably a channel), and the handlers associated with a
sequencer (task) are implemented by events. It is necessary
for the task to be an Executive channel so that it can use the
submit (potentially asynchronous) model.

Request-Response Processing Flow

Request-response processing flow is described now with
reference to FIGS. 20A-20C. For the purposes of this
description, assume that the processing is being handled by
a cache server such as server 1102 (FIG. 11) in a CDN.

The cache server obtains data (an incoming connection) at
a port and parses sufficient incoming data (at 2002) to
determine that the data correspond to an appropriate type of
request (e.g., HT'TP). The incoming data will include suffi-
cient information to allow the cache to determine whether or
not it can serve the requested resource. E.g., in the case of
an HTTP request, the incoming data will include HTTP
header information, including (a version of) the URL that
was used to make the request.

In order to determine whether or not it can serve the
request, the cache server needs to compare information
associated with the request with information in the global
configuration object (GCO). The cache server therefore
needs to determine whether it has a valid GCO (at 2004). If
necessary, the GCO is retrieved by the cache from the
control core (at 2006). If the current GCO is valid then it can
be used, otherwise the GCO must be validated or a new one
obtained. It should be appreciated that if the if the cache is
unable to obtain a valid GCO after some predetermined
number of tries then it should not serve the requested content
and should fail (and take itself out of rotation for selection
until it is able to retrieve a valid GCO).

In a current implementation the GCO acts as a “white list”
carrying valid protocols, hostnames and path prefixes. In
some cases, for certain reseller properties, customer identi-
fication can also be performed based on the VIP on which
the request came in. Such a technique may also be used to
provide a simple transparent proxy implementation. The
GCO maps the protocol, hostname and path prefix to a
customer identifier (Customer ID). The following table
shows an example GCO (the numbers in the left column are
provided for purposes of description, and are not intended to
be limiting in any way.)

String Customer ID
1 http://customerl.com/ 1.1
2 http://customer2.com/ 2.1
3 http://*.customer3.com/ 3.1
4 http://* special.images.customer3.com/ 32
5 http://*.images.customer3.com 33
6 http://images.customer3.com 34
7 http://customerd.com/ 4.1
8 http://customerd.com/topd1/ 4.2
9 http://customerd.com/topd 1/subd/ 43
10 http://customerd.com/topd2/ 43
11 http://customer5.com/ 5.1
12 https://customerS5.com/ 5.2
13 *://customer6.com/ 6.1
14 http://customer7.com/ 7.1
15 http://customer7.com:8080/ 7.2

25

40

45

50

55

60

65

38

The string in a GCO is some or all of a URL. Wildcards
may be used, but are limited. Recall that (for the purposes of
this description) a URL has the form:

<<protocol>>://<<domain>>/<<path>>
where <<protocol>> may be, e.g., “http”, “https”, “fip”, and
s0 on; <<domain> is a domain name and path specifies a
location. A formal URL description is given in RFC 1738,
Uniform Resource Locators (URL), by T. Berners-Lee et al.,
URIs are described in Network Working Group RFC 2396,
“Uniform Resource Identifiers (URI): Generic Syntax,” by
T. Berners-Lee et al., August, 1998, the entire contents of
each of which are fully incorporated herein for all purposes.

The “protocol” may be replaced with a label for the
listener the on which the request came in. The reason is that
a given customer may have a dedicated SSL listener which
presents their server certificate, so the cache will only want
to satisfy requests for that particular customer on that
listener. In that case, the GCO may have, e.g., “https-CUST”
(e.g., if CUST is a customer with a customer SSL VIP) as the
“protocol.”

In the GCO, the protocol may be replaced by an “*” (a
wildcard character), indicating all supported protocols map
to the same Customer ID (see, e.g. no. 13 in the table above).
A wildcard character (e.g., “*”). may also be used as first
component (only) of hostname (e.g., nos. 3, 4, 5). Thus,
“http://al.customer3.com” and “http://a2.customer3.com”
will both match entry number 3 in the table above. In order
to simplify the rules for resolving ambiguities, in some
implementations wildcards may not be used anywhere else.

Having completed the raw parse (at 2002), the cache
knows the URL that was used to make the request.

Once the cache has a valid GCO it tries to find a match for
the input URL in the GCO (at 2008). Preferably a “Best
match wins” strategy is used. The hostname is checked first,
and an exact match wins, otherwise, a wildcard match is
used with greatest number of literal matches wins. For
example, for customer3.com: the string
“special.images.customer3.com” maps to 3.2 (more literal
matches than 3.3); images.customer3.com maps to 3.4 (ex-
act match). Next the port and protocol are looked up, then,
longest path prefix wins.

The flow chart in FIGS. 20A-20C shows a potential loop
from the GCO-Exception hook if no response is generated.
To prevent a loop from occurring the system may only try
the GCO lookup a limited number of times, e.g., up to two
times. The point of the GCO-Exception hook is to allow
inspection/correction of the request such that it can be found
in the GCO. However, the system preferably only gets one
shot at correction.

Each customer may have corresponding scripts (se-
quences) that are to be used to process that customer’s
requests. These Customer Configuration Scripts (CCSs) are
associated with the customer ids, and, if the request (the
URL) relates to a valid customer (at 1610) (based on the
lookup in the GCO), then processing continues to determine
whether there are CCS (Customer Configuration Scripts)
corresponding to that customer. The CCS is checked for
validity and a new CCS is fetched (from the control core) if
needed. As noted previously, the CCS is used to assemble
sequences, which are then cached and used until they
become invalid (due, e.g., to a new CCS being retrieved). It
should be appreciated that scripts and sequences are not the
same thing, although as mentioned previously, a particular
handler may invoke a script to perform its function.

In presently preferred implementation the CCS is a Lua
script retrieved from the Control Core. The name of the

US 9,456,053 B2

39

script may be based on the customer’s ID, e.g., for Customer
1D 4.2 the script may be obtained at:
https://core.fp.net/ccs/ccs-4.2.luac

The script sets up customer-specific subsequences at
various hook points in the main processing sequence.
Results of setup are preferably cached, and the CCS is not
run on every request. It is re-run if the script is reloaded or
if conditions change. For example, if results of script are
cached persistently, then agent revision could change. The
compiled script is an object consumed by the caches, but the
script itself is generated from customer configuration
description in a database.

Once the CCS is configured (loaded and validated),
processing continues with a hook (denoted “cli-req”—client
request) to handle any corresponding custom processing.
That is, “cli-req” is a hook point where a subsequence of
customer-specific handlers (which may include a script) is
inserted. As an example, suppose that a certain customer
requires:

Set www.customerl.com as canonical hostname

Strip sessionid parameter from all query strings

These actions may be taken in cli-req (client request)
hook, for which exemplary CCS source would be:

hook[“cli-req”].add(*set-host(‘www.customerl.com’)”)

hook[“cli-req”].add(“strip-query(‘sessionid’)”)
where both set-host and strip-query are simple one-shot
handlers, inserted into a larger sequence.

As another example, suppose the customer has the same
client-side requirements as above, but also wants to set the
fill target to be origin.customerl.com

The corresponding CCS source would be:

hook[“cli-req”].add(*set-host(‘www.customerl.com’)”)

hook[“cli-req”].add(“strip-query(‘sessionid’)”)
hook[“fill-req”].add(*set-target(‘origin.customerl.
com’)”)
where set-host, strip-query, and set-target are simple one-
shot handlers, inserted into a larger sequence.

This CCS adds an action to the fill-req (fill request) hook.

As another example of a configuration script, suppose that
a customer requires proxy authentication using
auth.customerl.com for remote authentication. The custom-
er’s CCS would include:

hook[“cli-req”].add(*“proxy-auth(‘auth.customer]1.
com’)”)

The proxy-auth handler launches a sequence of its own to
perform the actual authentication request and waits for the
response. This is an example of a blocking handler which
launches a helper request. Based on the response to the
authentication request, the proxy-auth handler may generate
a 401 response immediately or allow processing to continue.

Another way to handle this with CCS (if a native proxy-
auth handler is not always available) may be:

if handlers[“proxy-auth”] == nil then
hook[“cli-req”].add(
“lua-txn(‘proxy-auth.luac’, ‘auth.customerl.com’)”)
else
hook[“cli-req”].add(
“proxy-auth(‘auth.customerl.com’)”)
end

This logic is part of CCS builder, not the configuration
writer. A single network-wide CCS can make these decisions
based on local environment. CCS can use arbitrarily com-
plex logic to assemble the building blocks for the customer,
including making additional requests, etc. “Native” handlers
could also be built-in scripts behind the scenes, but prefer-

10

15

20

25

30

35

40

45

50

55

60

65

40

ably native handlers are expected to be efficient C code. It
should be appreciated that the CCS is a per-customer object.
It should also be appreciated that a human configuration
writer does not need to deal with this detail; they just need
to know that they want authentication.

In addition, it should be appreciated that the CCS is not
necessarily run on every request. Rather, the CCS is used to
configure the agent to handle a given customer’s requests by
setting up the appropriate handlers at the various hook
points. Those handlers themselves may invoke a script or
scripts, but they do not have to and it is expected that a
typical customer’s requests will be handled without using
scripts (e.g., Lua) at all in the main request processing path.
The fact that the CCS is a script rather than a simple list of
handlers to install at hook points means it can be flexible in
inspecting its surroundings to determine the proper handlers
for the environment (software revision, region, etc.) in
which it is running.

As can be seen from the flow diagram in FIGS. 20A-20C,
hooks are available at numerous points in the processing
sequence. In a present implementation there are hooks
available for, amongst other things:

client requests

cache fills

GCO exceptions

cache misses

fill responses

fill pump

client responses

client pump

Those of skill in the art will realize and understand, upon
reading this description, that different and/or additional
hooks may be available and used in a particular implemen-
tation.

As noted earlier, default processing is available, and the
cache will service requests without any customer-specific
sequences, provided the customer is valid (e.g., found in the
GCO) and requires no customer-specific processing.

As the various elements of the CDN are themselves
potential clients (and sources of resources), the CDN may
provide a CCS for CDN resources. From an implementation
perspective, the CDN may be treated as a customer, with
entries in the GCO and with its own CCS.

EXAMPLE

FIG. 21A depicts an exemplary CDN, including multiple
caches (corresponding to the caches 102 in FIG. 1), forming
a cache cloud, and associated components (collectively 116).
Each cache (e.g., a cache cluster site) is depicted by a shaded
circle in the drawing in FIG. 21A. Other components of the
CDN system/framework are shown, including core control
mechanisms (denoted by pentagon shapes in the drawing,
corresponding, collectively, to control core 108 in FIG. 1),
collector mechanisms (denoted by triangle shapes in the
drawing and corresponding to collectors 106 in FIG. 1), and
origin servers/server sites (denoted by black circles in the
drawing). While the various components are shown in FIG.
21A, by way of example, overlaying maps of the United
States and Europe, those of skill in the art will realize and
understand, upon reading this description, that these over-
lays are merely exemplary and are not intended to limit the
actual locations of components or the number of compo-
nents.

With reference to FIG. 21B (and again to FIG. 21A), the
caches (which correspond, e.g., to the caches 102 in FIG. 1)
correspond to locations in the CDN 100 from which client

US 9,456,053 B2

41

110 can obtain resources that the CDN is providing (e.g.,
serving) on behalf of content providers (such as content
provider 112). The origin servers/server sites correspond to
locations from which the CDN cache servers/server sites can
obtain content provider content. The origin servers/server
sites may be part of the CDN (e.g., if content provider
content is preloaded into the CDN by content providers), or
they may be operated by the content providers indepen-
dently of the CDN.

The collector mechanisms (denoted with triangles in the
drawing and corresponding to the collectors 106 in FIG. 1)
are distributed around the system and collect information
regarding resources delivered on behalf of content providers
(e.g., logs and performance data) from the caches. The
collector mechanisms may provide the collected information
(in a raw or processed form) to content providers regarding
resources delivered on their behalf. Information provided to
content providers may be provided through a separate
administrative entity that collects and maintains data col-
lected by the collector mechanisms.

FIG. 21C shows an exemplary logical organization of a
portion of CDN caches shown in FIGS. 21A and 21B. As
shown in FIG. 21C, the CDN caches may be arranged in one
or more tiers (denoted in the drawing as “Edge Tier”,
“Cluster Tier”, . . ., “Rack Tier”, and “Region Tier”). These
tiers correspond to the “Edge Tier,” “Parent Tier (tier 2)”,
“Tier 3,” and so on in FIG. 8. The caches in the so-called
“Edge Tier” are preferably “closest” to clients (by some
measure(s) of network distance), and so resources served to
clients from caches in the edge tier will likely provide the
most efficient delivery of those resources to those clients. A
particular CDN may have only one tier. From the point of
view of caches in any tier, the caches in the next inner tier
are considered their parent caches. So, e.g., in the example
in FIG. 21C, the caches in the cluster tier are parent caches
to the caches in the edge tier. Similarly, the caches in the
region tier are parent caches to the caches in the rack tier. In
general, if there are n tiers denoted T, to T, with T, being
the outermost or edge tier, the caches in tier T;are parents of
the caches in tier T,,,. Caches in the same tier are referred
to as peer caches.

In the example in FIG. 21C, the tiers are as follows:

i+1°

Tier Tier Name
To Region Tier
T1 Rack Tier
T,y Cluster Tier
T, Edge Tier

Organization of the caches into tiers may correspond to
physical aspects of the caches, including, e.g., their relative
locations, how they are connected to the network and to
other networks, their speeds, capacities, types, etc.

The caches may also be organized into one or more
regions (denoted “Region 17, “Region 2,” etc. in the draw-
ing). The regions in FIG. 21C correspond to the groups in
FIG. 9. Regional/group organization may also be made
based on physical aspects of the caches (e.g., the geographi-
cal locations), but it may be made for other organizational
reasons (e.g., to implement policies). While six exemplary
and distinct regions/groups are shown in the drawing, those
of skill in the art will realize and understand, upon reading
this description, that any number of regions/groups may be
used, including overlapping regions. Those of skill in the art
will also realize and understand, upon reading this descrip-

10

15

20

25

30

35

40

45

50

55

60

65

42

tion, that regions may be of different sizes and that some
regions may not include caches in all tiers.

For example, the caches in a particular country may be
treated as being in a region in order to implement content
delivery policies for that country. Those caches may also be
treated as being in one or more regions in order to implement
content delivery policies on behalf of content providers.
These regions (country regions and content provider
regions) may overlap.

FIG. 21D shows various components of the CDN system
of FIG. 21A operating in their various roles. FIG. 21D
includes the rendezvous mechanisms (denoted using stars in
the drawing). As noted earlier, the presently preferred ren-
dezvous mechanism is implemented using the DNS system,
and preferably acts to select or identify a “best” or “optimal”
cluster from which to serve a given client. Preferably “best”
cache selection happens at DNS lookup time. FIG. 21D
shows three typical operations occurring in the CDN. On the
left side of the drawing (and shown in greater detail in FIG.
21E), the control core cluster performs distribution of con-
trol data to various cache clusters (preferably in response to
an hierarchical pull of the data from the cache clusters). On
the top right of the drawing (and shown in greater detail in
FIG. 21F), cache clusters are performing content delivery.
On the bottom of the drawing (and shown in greater detail
in FIG. 21G), the collector mechanism is collecting infor-
mation from cache clusters.

FIG. 21H shows the hierarchical operation of caches
(A00, A02, A0O3) in the edge tier, pulling resources from the
origin servers and control/traffic data from the control core
via caches in the CDN hierarchy. Similarly, the collectors
pull traffic (essentially in the other direction) from the edge
caches, via the CDN hierarchy.

FIG. 10 showed the general process of content delivery to
clients outside the CDN. FIG. 22 shows the same process
within the CDN. As can be seen, and as was noted above
with respect to FIG. 10, the processing of resource requests
is the same inside and outside the CDN. A client 2210
(which could be any CDN component, including a cache, a
collector, the control core, etc.) wants an object from a
source (which could also be any CDN component, including
a cache, a collector, the control core, etc.). The client request
is directed to a location in the CDN that should have that
resource. That location could also be any CDN component,
including a cache, a collector, the control core, etc. If that
location does not have the requested resource, it gets a copy
from the co-server for that resource (i.e., from the authori-
tative source for that resource).

While the client 2210 and the co-server 2212 are shown
outside the box labeled CDN 100, in this example they are
within that box (they are shown outside to aid in the
description).

Computing

The operations and acts shown and described above are
implemented, at least in part, by software running on one or
more computers of CDN 100.

One of ordinary skill in the art will readily appreciate and
understand, upon reading this description, that the various
processes described herein may be implemented by, e.g.,
appropriately programmed general purpose computers, spe-
cial purpose computers and computing devices. One or more
such computers or computing devices may be referred to as
a computer system (as noted above, FIG. 23 illustrates a
typical computer).

A computer 2302 includes one or more processors 2306,
memory 2308, storage (e.g., disk storage) 2310 connected
via bus 2316 or the like. The computer 2302 may also

US 9,456,053 B2

43

include peripheral devices 2314 such as a keyboard, display
monitor, printer and the like. The computer 2302 can con-
nect to a network or other computers or devices via network
interface(s) 2312.

As used herein, a “processor” means one or more micro-
processors, central processing units (CPUs), computing
devices, microcontrollers, digital signal processors, or like
devices or any combination thereof, regardless of their
architecture. An apparatus that performs a process can
include, e.g., a processor and those devices such as input
devices and output devices that are appropriate to perform
the process.

The various programs described herein will typically
reside as programs 2320 in the memory/memories 2308 of
one or more computers.

Programs that implement such methods (as well as other
types of data) may be stored and transmitted using a variety
of media (e.g., computer readable media) in a number of
manners. Hard-wired circuitry or custom hardware may be
used in place of, or in combination with, some or all of the
software instructions that can implement the processes of
various embodiments. Thus, various combinations of hard-
ware and software may be used instead of software only.

As used herein, the term “computer-readable medium”
refers to any medium, a plurality of the same, or a combi-
nation of different media, which participate in providing data
(e.g., instructions, data structures) which may be read by a
computer, a processor or a like device. Such a medium may
take many forms, including but not limited to, non-volatile
media, volatile media, and transmission media. Non-volatile
media include, for example, optical or magnetic disks and
other persistent memory. Volatile media include dynamic
random access memory 2308, which typically constitutes
the main memory of the computer. Transmission media
include coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise a system bus coupled to the
processor. Transmission media may include or convey
acoustic waves, light waves and electromagnetic emissions,
such as those generated during radio frequency (RF) and
infrared (IR) data communications. Common forms of com-
puter-readable media include, for example, a disk, magnetic
tape, any other magnetic medium, a CD-ROM, DVD, any
other optical medium, any other physical medium with
patterns of holes, a RAM, a PROM, an EPROM, a FLASH-
EEPROM, any other memory chip or cartridge, a carrier
wave as described hereinafter, or any other medium from
which a computer can read.

Various forms of computer readable media may be
involved in carrying data (e.g. sequences of instructions) to
a processor. For example, data may be (i) delivered from
RAM to a processor; (ii) carried over a wireless transmission
medium; (iii) formatted and/or transmitted according to
numerous formats, standards or protocols; and/or (iv)
encrypted in any of a variety of ways well known in the art.

A computer-readable medium can store (in any appropri-
ate format) those program elements which are appropriate to
perform the method.

One of ordinary skill in the art will readily appreciate and
understand, upon reading this description, that embodiments
of an apparatus may include a computer/computing device
operable to perform some (but not necessarily all) of the
described process.

Embodiments of a computer-readable medium storing a
program or data structure include a computer-readable
medium storing a program that, when executed, can cause a
processor to perform some (but not necessarily all) of the
described process.

10

15

20

25

30

35

40

45

50

55

60

65

44

Where a process is described herein, those of skill in the
art will appreciate that the process may operate without any
user intervention. In another embodiment, the process
includes some human intervention (e.g., a step is performed
by or with the assistance of a human).

The Executive

It is anticipated that in a CDN a cache machine with a 10
Gb/sec link, serving about 1 Mb/second per client, should be
able to serve on the order of 10,000 concurrent clients, with
about ten (10) activities per client. This requires on the order
of 100,000 concurrent activities. The inventors realized that
in order for a cache machine (and thus a CDN) to operate
efficiently and to take advantage of new multi-core computer
architectures, the cache machine would have to implement
some efficient form of concurrency.

More specifically, and based on their experience with
CDNs, the inventors realized and understood that network
applications (e.g., serving and distributing content in a
CDN) typically involved long wait periods. They therefore
realized that it would be useful to perform many small jobs
in order to be efficient (i.e., in the case of a CDN cache, it
would be beneficial to do tens or even hundreds of thousands
of things concurrently). They also realized that it would be
useful and beneficial to keep all processors (CPUs) active
simultaneously. The inventors realized that the handling of
an individual request in this type of application generally
consists of small amounts of computation separated by
relatively long wait times (long here being relative to the
speed of modern CPUs). Therefore, while requests are in the
waiting stage, other requests can be in the compute stage,
thereby keeping the CPUs busy. However, the inventors also
realized, based on their experience with CDNs, that not all
requests required long wait times, and that a concurrency
scheme that assumed that there would always be long wait
times would disadvantage those requests where there were
no long wait times.

The inventors also realized that a concurrency scheme
used in caches could take advantage of the type of work that
caches were expected to perform in order to improve per-
formance. For example, most network applications have
similar structure and most network operations take on the
order of milliseconds. A cache could perform useful opera-
tions while waiting for relatively slower network operations
or disk operations to complete. (Disk operations sometimes
take longer than milliseconds.) In addition, networking (and
the timing in large networks such as the Internet) is inher-
ently and largely unpredictable and unreliable. To deal with
these aspects, a preferred concurrency scheme should sup-
port asynchrony (to deal with unpredictable timing) and
organized exception handling (to deal with lots of potential
failure modes and unreliability of networks).

The inventors considered approaches such as one thread
per client to be too limiting for challenges of real-world
caches in operational CDNs. In a thread-per-client model
each client consumes an inordinate amount of system
resources while spending most of their time waiting (for
network or disk 1/0). A thread-per-client approach has other
drawbacks. E.g., pthreads require a minimum 16 KB stack
per thread, implying 1.6 GB used for an anticipated 10,000
concurrent clients.

Those of skill in the art will realize and understand, upon
reading this description, that these other approaches to
concurrency may work for smaller caches or CDNs, but they
do not scale well. Thus, while the disclosed executive
approach is preferred, other approaches are contemplated
and may be used.

US 9,456,053 B2

45

The presently preferred version of the Executive assumes
a 64-bit CPU with 64-byte cache lines. Basic data structures
are all cache-line sized and aligned. While this approach
improves efficiency with respect to retrieving data, moving
it around, and storing it, it may force some overloading of
data fields within data structures. Those of skill in the art will
realize and understand, upon reading this description, that
other implementations may be used.

Tasks, Events, and Vcores

The basic objects in the Executive are tasks, events, and
veores (Virtual CPU cores). FIGS. 24A-24B show relation-
ships between the Executive’s tasks, events and vcores.

A virtual CPU core or vcore may be considered, in some
aspects, to be like a pthread with some data. There may be
any number of vcores, although the Executive is expected to
be most efficient when there is one vcore per physical core,
with each vcore bound to or associated with a fixed physical
core.

In order to support synchronization, each vcore is
assigned a vcore identifier (vid), and each task has a vid field
that specifies the vcore to which that task belongs.

Each task has a corresponding input event list. For
example, as shown in FIG. 24A, the task block T has a list
of three events (denoted E1, E2, E3 in the drawing).

Each vcore has a prioritized list of tasks called its run
queue. E.g.,

FIG. 24B shows vcore no. 2 with a run queue comprising
a number of tasks (denoted T1, T2, T3), each with a
corresponding event list (E11 for task T1, E21 and E22 for
task T2, and E31 for task T3). One task (T4) is currently
running, and a number of tasks (T5 . .. T6) are waiting. The
task block T in FIG. 24A is shown with VID=2 (i.e., that task
is associated with vcore no. 2).

An Executive task is described by a function pointer (f),
a data pointer (d), and some other (e.g., task accounting)
information. A task may be run by invoking the function on
the data (e.g., {(d)). Each task has a task identifier or handle
(tid). With reference to the exemplary task structure in FIG.
24C, preferably a task is packed into a 128-byte structure,
and is identified by a 4-byte integer task handle (“tid” or task
id).

Channels are a special type of Executive task. A channel
task contains pointer to “Channel Information Block” (chib).
Each chib is channel-type-specific, and contains methods
for:

dropoff (asynchronous), submission (maybe synchro-

nous) and return (deliver) of events (where the events
being returned are being returned to a channel from
another channel)

timeout

close, destroy

migrating

create entry point

and various others.

Channels have flags set and wake/chib points to a chib.
User tasks have no flags, wake/chib points to wakeup
predicate (this is an example of the field overloading
referred to earlier). Prio determines where a task gets placed
on the run queue.

The following channel types are presently supported:

Network

passive listener
active connection

5

10

15

20

25

30

35

40

45

50

55

60

65

46

-continued

udp
resolv

datagram
DNS resolver
Async VO

aio slave
aio master
HTTP

aios
alo

fpnsh__conn HTTP parser and formatter

Application Specific, e.g., for cache:

the sequencer channel (manages running of handlers)
various Lua-related channels (handle dealing with Lua engines
and running them)

In some embodiments, the Async 1O channels may be
performed by the 10 library. A aios and aio may not be used,
and a separate non-Executive library (libfpio) will handle
asynchronous 1/O.

As used herein “cid” refers to a “channel id” and “tid”
means a “task id”. In practice, the “cid” field may be used
as the “to” address and the “tid” field is used as the from
address of an event. There are cases of both task-to-task and
channel-to-channel communication where a “cid” may actu-
ally be a task id, and vice versa.

The task structure is preferably cache aligned. In the
drawing, the function pointer is denoted func. A task struc-
ture has an additional 64 bytes for use as scratch space.
There are 48464 bytes free for task use, although a given
task is always free to allocate more memory for itself and
keep track of it by placing a pointer in the task structure.

Every task contains a reference counter (refs), and a task
dies if it is dispatched with its reference counter set to zero
(refs==0). A reference (also known as “cid” or channel id,
also known as “tid”) is a copy of the integer id of a task and
is created when the task is created, or when a task itself calls
ns_tid_alloc(). A reference is destroyed when returned to
task during close or discard or the task itself calls ns_tid-
_free().

Reference are capabilities that should not be duplicated or
destroyed and should be carefully tracked. They are used in
tid and cid fields of events.

The Executive uses counting references to prevent stale
references (they are an Executive analog of locks).

An event is a message block (preferably 128 bytes,
including 64 bytes for scratch space) and contains two task
references (two tids), one for the initiator task (tid) and the
other for the target task (cid). The 64-byte scratch space may
be divided into internal and external scratch space. Events
may be linked.

In operation, each vcore thread runs an endless loop and:

retrieves (e.g., pops) the highest priority task t from its run

queue;

calls t->1{(t);

calls ns_dispatch(t) to requeue, destroy or abandon the

task t.

The following two rules should ensure memory consis-
tency:

Access rule: If another task has the same vid as you, you

can safely access its data.

Migration rule: Only vcore n can change a vid value to or

from n.

The Executive is started on a host by creating an appro-
priate number of vcores for that host and then starting the
first task. E.g., to start the Executive with n vcores, call:

ns_begin(first_task_func, n);

US 9,456,053 B2

47

The first task creates and launches more tasks and chan-
nels, e.g., as follows:

first_task_func()
t = ns_task();

ns_launch(t);
cidl = ns_chan(foospec, 0);

Tasks and channels create events and communicate with
each other:

e =ns_event()
e->cid = cidl
ns_dropofl(e)

Tasks, channels and events are created and die as neces-
sary.

ns_task(); ns_Chan() ns_event(); return ns_die();

In a preferred implementation, the Executive will exit
when the last task exits.

There are two styles of communication within the Execu-
tive, namely guaranteed asynchronous communication and
potentially asynchronous communication.

Guaranteed asynchronous communication puts an event
on the input queue of a destination task, and wakes the
destination task, i.e., puts it on the run queue. The destina-
tion task runs (later) and an event arrives back on the input
queue of the source task. It should be appreciated that the
source task may choose to send the event “anonymously”
(that is, without a tid), in which case no response will return.
Another option is for the source task to provide the tid of
some third task to which the event will be delivered once the
destination task is done with it. This type of communication
is lightweight and non-blocking. E.g., ns_event_dropofi(e)
uses e->cid as destination; ns_event_deliver(e) uses e->tid
as destination. Basically, ns_event_dropoff is used by tasks
to drop an event off to a channel, and ns_event_deliver is
used by tasks to return events to whoever sent them.

Potentially asynchronous communication is invoked, e.g.,
by

e=submit(e).

This approach works as follows:

S1 Passes event to destination task

S2 Suspends current task

S3 Executes destination task instead

sS4 Event pointer returned as function return value
S5 Resumes current task.

Potentially asynchronous communication can go asyn-
chronous by returning null pointer in step S4, and delivering
event later.

Communication reverts to asynchronous if, e.g., the des-
tination task is not on the same vcore, or there is too much
work to do in one run, or the task needs to wait for internal
asynchronous operations.

The destination does not know/care if it was called via
dropoff() (i.e., as Guaranteed asynchronous) or submit()
(i.e., as Potentially asynchronous). Events always arrive on
the input queue, which is accessed via ns_next_event()
Events are returned by channels using ns_event_deliver().
If the destination is a channel, it can know whether an event

10

20

25

30

35

40

45

50

55

60

65

48

was dropped off or submitted, since these are separate chib
entry points which can be overridden.
Events can be transferred, e.g., using the following code:

ns_event_t *e = ns_event();

e->tid = ns__tid();

e->cid = some__cid;

some__cid = 0;

e->opcode = Executive_ OP_ READ_ BUFFER;
e->timeout = 5.0;

e->ns__buf__arg = malloc(1024);

e->ns__buf count = 1024;

e = ns__submit(e);

This example demonstrates care about reference counting.
Since some_cid represents a reference and that reference has
been transferred to e->cid, the value of some_cid gets
zeroed.

This event transfer may be wrapped in a function, e.g., as:

ns_event_t *e = ns_event();
e->tid = ns__tid();

e->cid = some__cid;

e = ns_submit_ 1k read(e, 1024);

Event Driven Programs

The following code shows a basic “loop-switch” skeleton
for an Executive task function presented in a ‘C’ like
language:

task_func(t)
while((e = ns_next_event())) {

switch(event_type(e)) {

case TYPEO:
break;
case TYPEn:
break;
ns_return(e);

return ns_wait();

The following example code shows a basic “loop-switch”
skeleton for an Executive task function with submit():

task_func(t)
e=0;
while(e | | (e = ns_next_event())) {
switch(event_type(e)) {
case TYPEO:
e = submit(e);
continue;
case TYPEn:
break;
ns_return(e);

return ns_wait();

FIGS. 25A-25B compare the Executive stack of the
Executive submit operation to that for C procedure calls.

US 9,456,053 B2

49

The Executive Submit operation (e=submit(e)) is analogous
to a C procedure call, with the important difference that there
is the option to go asynchronous when an event is submitted.
The Executive’s task blocks are analogous to C stack
frames. The Executive’s event blocks are analogous to C’s
arg and return address areas; and the Executive’s tid & tag
are analogous to C’s return address.

However, in the Executive multiple calls can be active
simultaneously and frames can live on after the call. This
allows writing a potentially asynchronous hook, e.g.,

e=submit_op_foo(e, args);

Channels may be created using a parameter block called
a spec, e.g.:

ns_foo_t *spec = ns _ foo();
*/

spec->paraml = vall;
spec->param? = val2;

cid = ns_chan(spec, 5);
refs*/

ns_foo_(spec);

/* create spec for foo channel
/* set parameter */
/* set parameter */

/* create foo chan, return 5

/* destroy spec */

A channel may be closed by returning the refs, e.g.:

ns_ close__cid(cid, 4);/* Explicit close, 1 + 4 refs */
ns_ discard_ cid(cid, 1);/* Return 1 + 1 refs */
ns_ discard_ cid(cid, 2);/* Return 1 +2 refs, implicit close */

A channel will not be destroyed until all refs have been
returned.

A global exchange (see FIG. 26) may be used to transfer
pointer ownership between vcores. Typed pointers are
packed into cache lines which are used to transfer the
pointers efficiently, via mutex-protected queues. While vari-
ous techniques are used to make the global exchange effi-
cient, e.g., amortization of lock cost by transferring multiple
messages with a single lock transaction, lock-free inspection
of'a queue to see if there may be data (only need the lock if
data is seen), etc, it should be appreciated that a “direct
exchange” is preferable, and that the queues involved may
be created using lock-free techniques.

The following example shows synchronization in task
migration. In this example, task t wants to migrate from
vid=2 to vid=3.

Initially t->vid=2.

t func sets t->vid=1003 and returns Executive_RUN.

ns-dispatch() notices t->vid!=2 and puts (t, RUN, 3) on

global exchange.

Global exchange transfers the triple to vcore 3.

Vcore 3 sets t->vid=3 and adds task to its run queue.

Note that t->vid is set to 1003.

The Executive provides a multi-core solution in which
each processor (CPU) has a queue of tasks which can run on
that processor (in a vcore—virtual core on that processor).
Processes can check if other processes are running on the
same core and then determine/share information with those
processes.

In prior concurrency/parallel processing systems, tasks or
processes get spawned off and return when they are com-
plete. An important aspect of cache processing, especially in
the context of a CDN, is that some tasks may be able to
complete right away. In those cases there is no reason to
delay the return. In other words, if we know that a task might
complete its processing right away (i.e., relatively quickly),
we can have that task provides its result without delay.

10

15

20

25

30

35

40

45

50

55

[
<

o
o

50

One example of the use of this technique is when a Lua
script is executed: in many cases, the script may perform
such a small operation that it can complete essentially right
away, which saves the overhead of needing to schedule it as
a task unless that becomes necessary. Another example of
this technique is in the sequencer channel: If a series of
handlers runs quickly, then calling the sequencer is essen-
tially a function call. Only if a handler needs to wait for data
or if too much computation needs to get done will the
sequencer become a scheduled task.

This may be achieved by the following:

if(event = submit(event)) == null)
return ns_wait() ;
// if non-null then done, otherwise wait.

This approach (do it right away if you can, otherwise give
me the answer later) provides a potentially asynchronous
solution to cache specific problems.

Additionally, programming in a “potentially asynchro-
nous” style means that if it is later determined that some
feature or aspect (which was synchronous previously) needs
to go asynchronous, this can be done without having to
rewrite other code. Those of skill in the art will realize and
understand, upon reading this description, that there are
costs/risks to this approach, e.g., if only the synchronous
path is taken in a given situation, the asynchronous path may
be untested or the performance of the application may
degrade if a previously synchronous operation becomes
asynchronous. However, these risks can be mitigated, e.g.,
by forcing everything to be asynchronous for testing pur-
poses.

In some preferred embodiments, the Executive is imple-
mented using a system sometimes referred to as Shell or
NetShell. It should be appreciated that the Executive and
NetShell described herein are unrelated to any products or
tools of any other entity. In particular, as used herein
NetShell does not refer to Microsoft Corporation’s script-
able command-line tool, nor does executive or NetShell
refer to a Unix shell-like user interface.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiments, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the spirit
and scope of the appended claims.

What is claimed:

1. A content delivery network (CDN), the CDN serving
resources on behalf of one or more customers of the CDN,
the CDN comprising:

(a) a control core; and

(b) a plurality of cache servers, each particular cache

server of said plurality of cache servers being con-
structed and adapted to:
(b)(1) upon joining the CDN,
(b)(1)(1) obtain global configuration data from the
control core; and
(b)(2) having joined the CDN,
(b)(2)(1) obtain updated global configuration data, if
needed; and
(b)(2)(2) obtain customer configuration information
associated with at least one customer of the CDN;
(b)(2)(3) serve to a client a particular resource asso-
ciated with a particular customer of the CDN in
accordance with (i) the global configuration data,

US 9,456,053 B2

51

and (ii)) customer configuration information
obtained in (b)(2)(2) and associated with the par-
ticular customer.

2. The CDN of claim 1 wherein each particular cache
server of said plurality of cache servers is constructed and
adapted to, upon joining the CDN,

(b)(1)(2) obtain data from one or more other locations in

the CDN.

3. The CDN of claim 1 wherein processing by a cache
server in (b)(2)(2) to obtain customer configuration infor-
mation associated with a specific customer occurs upon
receipt of a request for a resource associated with the
specific customer.

4. The CDN of claim 1 wherein processing by a cache
server in (b)(2)(2) to obtain customer configuration infor-
mation associated with a specific customer occurs prior to
receipt of a request for a resource associated with the
specific customer.

5. The CDN of claim 1 wherein customer configuration
information associated with the particular customer com-
prises one or more scripts to be used by the particular cache
server to process requests for resources associated with the
particular customer.

6. The CDN of claim 1 wherein the customer configura-
tion information comprises at least one CDN resource.

7. The CDN of claim 1 wherein the customer configura-
tion information associated with the particular customer
comprises at least one customer configuration script (CCS)
associated with the particular customer.

8. The CDN of claim 1 wherein the customer configura-
tion information associated with the particular customer
specifies customer-specific processing requirements for
resources served on behalf of that customer.

9. The CDN of claim 1 wherein the global configuration
data comprises at least one CDN resource.

10. The CDN of claim 9 wherein the global configuration
data comprises global configuration object (GCO).

11. The CDN of claim 2 wherein the one or more other
locations in the CDN comprise at least one location selected
from: a cache server, a cache server site, a region of cache
servers, a cache cluster, and a cache cluster site.

12. The CDN of claim 11 wherein the one or more other
locations in the CDN comprise at least one peer location.

13. The CDN of claim 2 wherein the particular cache
server determines said one or more other locations using
said information in said global configuration data.

14. The CDN of claim 1 wherein said particular cache
server obtains said updated global configuration data from
one or more locations in the CDN.

15. The CDN of claim 14 wherein the one or more
locations in the CDN comprise one or more locations
selected from: (i) the control core; and (ii) one or more
locations selected from: a cache server, a cache server site,
a region of cache servers, a cache cluster, and a cache cluster
site.

16. The CDN of claim 1 wherein the control core com-
prises a distributed system consisting of a plurality of
machines.

17. The CDN of claim 16 wherein the control core uses a
distributed consensus algorithm to achieve consensus
among the plurality of machines.

18. The CDN of claim 1 wherein each particular cache
server of said plurality of cache servers is further con-
structed and adapted to:

determine validity of a version of global configuration

data stored on said particular cache server, and wherein
said particular cache server obtains updated global

5

10

15

20

25

30

40

45

50

55

60

65

52

configuration data in (b)(2)(1) when said particular
cache server determines that said version of said global
configuration data stored on said particular cache server
is invalid.

19. The CDN of claim 1 wherein each particular cache
server of said plurality of cache servers is further con-
structed and adapted to:

determine validity of a version of particular customer
configuration information associated with a particular
customer and stored on said particular cache server, and
wherein said particular cache server obtains customer
configuration information in (b)(2)(2) when said par-
ticular cache server determines that said version of said
particular customer configuration information stored on
said particular cache server is invalid.

20. The CDN of claim 19 wherein said particular cache
server is constructed and adapted to determine said validity
of said version of particular customer configuration infor-
mation stored on said particular cache server in response to
a request to serve content associated with said particular
customer.

21. The CDN of claim 1 further comprising:

(c) at least one rendezvous mechanism.

22. The CDN of claim 1 further comprising:

(d) a collector system comprising one or more collector
mechanisms, each of said collector mechanisms being
constructed and adapted to:

(d)(1) obtain information from at least one cache server.

23. The CDN of claim 22 wherein each particular cache
server of said plurality of cache servers is further con-
structed and adapted to:

(b)(3) generate information; and

(b)(4) provide at least some of said generated information
to said collector system.

24. The CDN of claim 21 wherein each particular cache
server of said plurality of cache servers provides at least
some of said generated information in (b)(4) by streaming
said at least some of said generated information to one or
more collector mechanisms in said collector system.

25. The CDN of claim 1 wherein the CDN has customer
configuration information associated therewith, and wherein
each particular cache server serves CDN resources in accor-
dance with the global configuration data and the customer
configuration information associated with the CDN.

26. The CDN of claim 1 wherein at least one cache server
of said plurality of cache servers comprises an executive
system supporting concurrent processing of tasks on said at
least one cache server.

27. A computer-implemented method, operable in a con-
tent delivery network (CDN) comprising: (a) a control core;
and (b) a plurality of cache servers, the CDN serving
resources on behalf of one or more customers of the CDN,
the method comprising, by hardware and software on a
particular cache server of said plurality of cache servers:

(A) obtaining global configuration data from the control
core;

(B) selectively obtaining updated global configuration
data; and

(C) obtaining customer configuration information associ-
ated with a particular customer of the CDN;

(D) serving, to a client, a particular resource associated
with the particular customer in accordance with (i) the
global configuration data; and (ii) the customer con-
figuration information associated with the particular
customer.

US 9,456,053 B2

53

28. The method of claim 27 further comprising:

(A)(2) obtaining data from one or more other locations in

the CDN.

29. The method of claim 27 wherein the obtaining of said
customer configuration information in (C) occurs upon
receipt of a request of said particular cache server for a
resource associated with the particular customer.

30. The method of claim 27 wherein the obtaining of said
customer configuration information in (C) occurs prior to

receipt of a request of said particular cache server for a 1

resource associated with the particular customer.

31. The method of claim 27 wherein the customer con-
figuration information comprises one or more scripts to be
used by the particular cache server to process requests for
resources associated with the particular customer.

32. The method of claim 27 wherein the customer con-
figuration information comprises at least one CDN resource.

33. The method of claim 27 wherein the customer con-
figuration information comprises at least one customer con-
figuration script (CCS) associated with the particular cus-
tomer.

34. The method of claim 27 wherein the customer con-
figuration information associated with the particular cus-
tomer specifies customer-specific processing for resources
served on behalf of that customer.

35. The method of claim 27 wherein the global configu-
ration data comprises at least one CDN resource.

36. The method of claim 35 wherein the global configu-
ration data comprises global configuration object (GCO).

37. The method of claim 28 wherein the one or more other
locations in the CDN comprise at least one location selected
from: a cache server, a cache server site, a region of cache
servers, a cache cluster, and a cache cluster site.

38. The method of claim 37 wherein the one or more other
locations in the CDN comprise at least one peer location.

39. The method of claim 28 wherein the particular cache
server determines said one or more other locations using
said information in said global configuration data.

40. The method of claim 27 wherein said particular cache
server obtains said updated global configuration data in (B)
from one or more locations in the CDN.

41. The method of claim 40 wherein the one or more
locations in the CDN comprise one or more locations
selected from: (i) the control core; and (ii) one or more
locations selected from: a cache server, a cache server site,
a region of cache servers, a cache cluster, and a cache cluster
site.

42. The method of claim 27 wherein the control core
comprises a distributed system consisting of a plurality of
machines.

43. The method of claim 42 wherein the control core uses
a distributed consensus algorithm to achieve needed con-
sensus among the plurality of machines.

44. The method of claim 27 further comprising, by said
particular cache server:

15

20

25

30

40

45

50

54

(F) determining validity of a version of global configu-
ration data stored on said particular cache server, and
wherein said particular cache server obtains updated
global configuration data in (B) when said particular
cache server determines that said version of said global
configuration data stored on said particular cache server
is invalid.

45. The method of claim 27 further comprising, by said

particular cache server:

(G) determining validity of a version of particular cus-
tomer configuration information associated with the
particular customer and stored on said particular cache
server, and wherein said particular cache server obtains
customer configuration information in (C) when said
particular cache server determines that said version of
said particular customer configuration information
stored on said particular cache server is invalid.

46. The method of claim 45 wherein said particular cache
server determines validity of said version of particular
customer configuration information in (G) in response to a
request to serve content associated with said particular
customer.

47. The method of claim 27 wherein the CDN further
comprises: (d) a collector system comprising one or more
collector mechanisms, each of said collector mechanisms
being constructed and adapted to obtain information from at
least one cache server, the method further comprising, by
said particular cache server:

(E) generating information; and

(F) providing at least some of said generated information
to said collector system.

48. The method of claim 47 wherein said providing in (F)

comprises:

(F)(1) streaming said at least some of said generated
information to one or more collector mechanisms in
said collector system.

49. The method of claim 27 further comprising, by said

particular cache server of said plurality of cache servers:

(E) obtaining second customer configuration information
associated with a second customer of the CDN, said
second customer being distinct from said particular
customer; and

(F) serving a second particular resource associated with
the second customer in accordance with (i) the global
configuration data, and (ii) the second customer con-
figuration information associated with the second cus-
tomer.

50. The method of claim 27 wherein the CDN has
customer configuration information associated therewith,
and wherein the particular cache server serves CDN
resources in accordance with the global configuration data
and the customer configuration information associated with
the CDN.

